Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States.
Biochemistry. 2012 Jun 5;51(22):4463-72. doi: 10.1021/bi3003956. Epub 2012 May 22.
The glucocorticoid receptor (GR) is a member of the steroid receptor family of ligand-activated transcription factors. A number of studies have shown that steroid receptors regulate distinct but overlapping sets of genes; however, the molecular basis for such specificity remains unclear. Previous work from our laboratory has demonstrated that under identical solution conditions, three other steroid receptors [the progesterone receptor A isoform (PR-A), the progesterone receptor B isoform (PR-B), and estrogen receptor α (ER-α)] differentially partition their self-association and promoter binding energetics. For example, PR-A and PR-B generate similar dimerization free energies but differ significantly in their extents of intersite cooperativity. Conversely, ER-α maintains an intersite cooperativity most comparable to that of PR-A yet dimerizes with an affinity orders of magnitude greater than that of either of the PR isoforms. We have speculated that these differences serve to generate receptor-specific promoter occupancies, and thus receptor-specific gene regulation. Noting that GR regulates a unique subset of genes relative to the other receptors, we hypothesized that the receptor should maintain a unique set of interaction energetics. We rigorously determined the self-association and promoter binding energetics of full-length, human GR under conditions identical to those used in our earlier studies. We find that unlike all other receptors, GR shows no evidence of reversible self-association. Moreover, GR assembles with strong intersite cooperativity comparable to that seen only for PR-B. Finally, simulations show that such partitioning of interaction energetics allows for receptor-specific promoter occupancies, even under conditions where multiple receptors are competing for binding at identical sites.
糖皮质激素受体 (GR) 是配体激活转录因子甾体受体家族的成员。许多研究表明,甾体受体调节不同但重叠的基因;然而,这种特异性的分子基础尚不清楚。我们实验室之前的工作表明,在相同的溶液条件下,其他三种甾体受体 [孕激素受体 A 同种型 (PR-A)、孕激素受体 B 同种型 (PR-B) 和雌激素受体 α (ER-α)] 会对其自身缔合和启动子结合的能量进行不同的分配。例如,PR-A 和 PR-B 产生相似的二聚化自由能,但它们的站点间协同作用程度差异很大。相反,ER-α 保持与 PR-A 最相似的站点间协同作用,但与 PR 同种型中的任何一种相比,其二聚化亲和力要高出几个数量级。我们推测这些差异有助于产生受体特异性启动子占据,从而产生受体特异性基因调控。注意到 GR 相对于其他受体调节一组独特的基因,我们假设该受体应保持一组独特的相互作用能量。我们严格确定了全长人 GR 在与我们早期研究中使用的条件相同的条件下的自身缔合和启动子结合的能量。我们发现,与所有其他受体不同,GR 没有可逆自缔合的证据。此外,GR 组装具有强烈的站点间协同作用,与仅在 PR-B 中看到的协同作用相当。最后,模拟表明,这种相互作用能量的分配允许受体特异性启动子占据,即使在多个受体竞争相同位点结合的情况下也是如此。