Suppr超能文献

使用体外重组翻译系统进行伴侣蛋白效应的全局分析。

Global analysis of chaperone effects using a reconstituted cell-free translation system.

机构信息

Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan.

出版信息

Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8937-42. doi: 10.1073/pnas.1201380109. Epub 2012 May 21.

Abstract

Protein folding is often hampered by protein aggregation, which can be prevented by a variety of chaperones in the cell. A dataset that evaluates which chaperones are effective for aggregation-prone proteins would provide an invaluable resource not only for understanding the roles of chaperones, but also for broader applications in protein science and engineering. Therefore, we comprehensively evaluated the effects of the major Escherichia coli chaperones, trigger factor, DnaK/DnaJ/GrpE, and GroEL/GroES, on ∼800 aggregation-prone cytosolic E. coli proteins, using a reconstituted chaperone-free translation system. Statistical analyses revealed the robustness and the intriguing properties of chaperones. The DnaK and GroEL systems drastically increased the solubilities of hundreds of proteins with weak biases, whereas trigger factor had only a marginal effect on solubility. The combined addition of the chaperones was effective for a subset of proteins that were not rescued by any single chaperone system, supporting the synergistic effect of these chaperones. The resource, which is accessible via a public database, can be used to investigate the properties of proteins of interest in terms of their solubilities and chaperone effects.

摘要

蛋白质折叠过程中常受到蛋白质聚集的阻碍,而细胞内的多种伴侣分子可以防止蛋白质聚集。评估哪些伴侣分子对容易聚集的蛋白质有效的数据集不仅为理解伴侣分子的作用提供了宝贵的资源,还为蛋白质科学和工程的更广泛应用提供了资源。因此,我们使用重组无伴侣翻译系统,全面评估了主要的大肠杆菌伴侣分子——触发因子、DnaK/DnaJ/GrpE 和 GroEL/GroES——对约 800 种易聚集的胞质大肠杆菌蛋白质的影响。统计分析揭示了伴侣分子的稳健性和有趣特性。DnaK 和 GroEL 系统极大地提高了数百种弱偏倚蛋白质的溶解度,而触发因子对溶解度的影响则微不足道。伴侣分子的联合添加对任何单一伴侣分子系统都不能拯救的蛋白质亚组有效,支持这些伴侣分子的协同作用。该资源可通过公共数据库访问,可用于根据溶解度和伴侣分子效应研究感兴趣蛋白质的特性。

相似文献

1
Global analysis of chaperone effects using a reconstituted cell-free translation system.
Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):8937-42. doi: 10.1073/pnas.1201380109. Epub 2012 May 21.
3
Chaperone-assisted protein folding in the cell cytoplasm.
Curr Protein Pept Sci. 2001 Sep;2(3):227-44. doi: 10.2174/1389203013381134.
4
ClpB and HtpG facilitate de novo protein folding in stressed Escherichia coli cells.
Mol Microbiol. 2000 Jun;36(6):1360-70. doi: 10.1046/j.1365-2958.2000.01951.x.
5
In vivo analysis of the overlapping functions of DnaK and trigger factor.
EMBO Rep. 2004 Feb;5(2):195-200. doi: 10.1038/sj.embor.7400067. Epub 2004 Jan 9.
6
Recognizability of heterologous co-chaperones with Streptococcus intermedius DnaK and Escherichia coli DnaK.
Microbiol Immunol. 2018 Nov;62(11):681-693. doi: 10.1111/1348-0421.12651. Epub 2018 Nov 5.
8
Substrate Interaction Networks of the Escherichia coli Chaperones: Trigger Factor, DnaK and GroEL.
Adv Exp Med Biol. 2015;883:271-94. doi: 10.1007/978-3-319-23603-2_15.
9
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.
Cell. 2005 Jul 29;122(2):209-20. doi: 10.1016/j.cell.2005.05.028.
10
SecB is a bona fide generalized chaperone in Escherichia coli.
Proc Natl Acad Sci U S A. 2004 May 18;101(20):7583-8. doi: 10.1073/pnas.0402398101. Epub 2004 May 5.

引用本文的文献

2
Approaches to Study Proteins Encoded by Essential Genes.
Proteins. 2025 Aug 15. doi: 10.1002/prot.70039.
4
Lipid Modification and Membrane Localization of Proteins in Cell-Free System.
ACS Synth Biol. 2025 Jul 18;14(7):2729-2738. doi: 10.1021/acssynbio.5c00155. Epub 2025 Jun 19.
5
HSP47 at the Crossroads of Thrombosis and Collagen Dynamics: Unlocking Therapeutic Horizons and Debates.
TH Open. 2025 Jun 5;9:a25994925. doi: 10.1055/a-2599-4925. eCollection 2025.
6
Long-Term Protein Synthesis with PURE in a Mesoscale Dialysis System.
ACS Synth Biol. 2025 Jan 17;14(1):290-295. doi: 10.1021/acssynbio.4c00618. Epub 2025 Jan 5.
7
ATP Regeneration from Pyruvate in the PURE System.
ACS Synth Biol. 2025 Jan 17;14(1):247-256. doi: 10.1021/acssynbio.4c00697. Epub 2025 Jan 4.
8
Cell-Free Gene Expression: Methods and Applications.
Chem Rev. 2025 Jan 8;125(1):91-149. doi: 10.1021/acs.chemrev.4c00116. Epub 2024 Dec 19.

本文引用的文献

1
What distinguishes GroEL substrates from other Escherichia coli proteins?
FEBS J. 2012 Feb;279(4):543-50. doi: 10.1111/j.1742-4658.2011.08458.x. Epub 2012 Jan 4.
2
Molecular chaperones in protein folding and proteostasis.
Nature. 2011 Jul 20;475(7356):324-32. doi: 10.1038/nature10317.
3
The aggregation properties of Escherichia coli proteins associated with their cellular abundance.
Biotechnol J. 2011 Jun;6(6):752-60. doi: 10.1002/biot.201100014. Epub 2011 Apr 29.
4
The heat shock response: life on the verge of death.
Mol Cell. 2010 Oct 22;40(2):253-66. doi: 10.1016/j.molcel.2010.10.006.
5
Cellular strategies for controlling protein aggregation.
Nat Rev Mol Cell Biol. 2010 Nov;11(11):777-88. doi: 10.1038/nrm2993. Epub 2010 Oct 14.
6
Physicochemical determinants of chaperone requirements.
J Mol Biol. 2010 Jul 16;400(3):579-88. doi: 10.1016/j.jmb.2010.03.066. Epub 2010 Apr 21.
7
A systematic survey of in vivo obligate chaperonin-dependent substrates.
EMBO J. 2010 May 5;29(9):1552-64. doi: 10.1038/emboj.2010.52. Epub 2010 Apr 1.
8
Structure and function of the molecular chaperone Trigger Factor.
Biochim Biophys Acta. 2010 Jun;1803(6):650-61. doi: 10.1016/j.bbamcr.2010.01.017. Epub 2010 Feb 2.
9
Accurate prediction of DnaK-peptide binding via homology modelling and experimental data.
PLoS Comput Biol. 2009 Aug;5(8):e1000475. doi: 10.1371/journal.pcbi.1000475. Epub 2009 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验