Suppr超能文献

基于HSV空间的染色小梁切片彩色图像分割与空洞填充

[Segmentation and cavity filling of color image from stained trabecular sections based on HSV space].

作者信息

Lu Chengyu, Wu Tie

机构信息

Department of Pharmacology, Guangdong Medical College, Dongguan 523808, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2012 Apr;29(2):260-3.

Abstract

A approach to segment the color image based on Hue-Saturation-Value (HSV) space was proposed, and it was used to segment the color image digitized from the bone sections stained with Masson-Goldner's Trichrome by CCD camera. According to HSV approach, color image was transformed from RGB space to HSV space at first, and then the image was segmented by using the threshold value of hue (90 < H < 150) and saturation (S > 0.25) to find the image of the green color stained trabecular. And then used the threshold value of saturation (S < 0.2) and value (V > V(background) x 0.95) to find the unstained high brightness field. At last, unstained high brightness fields which were concluded in stained trabecular image were filled with the color of trabecular, so the completely trabecular image could be drawn. The results showed that HSV approach was fast and simple, and it could be an efficient automatic algorithm.

摘要

提出了一种基于色调-饱和度-明度(HSV)空间对彩色图像进行分割的方法,并将其用于对通过CCD相机从用马森-戈德纳三色染色法染色的骨切片数字化得到的彩色图像进行分割。根据HSV方法,首先将彩色图像从RGB空间转换到HSV空间,然后通过使用色调阈值(90 < H < 150)和饱和度阈值(S > 0.25)对图像进行分割,以找到绿色染色小梁的图像。接着使用饱和度阈值(S < 0.2)和明度阈值(V > V(背景)×0.95)来找到未染色的高亮度区域。最后,将包含在染色小梁图像中的未染色高亮度区域用小梁的颜色填充,从而可以绘制出完整的小梁图像。结果表明,HSV方法快速简单,可能是一种有效的自动算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验