Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany.
Hum Mol Genet. 2012 Aug 15;21(16):3655-67. doi: 10.1093/hmg/dds195. Epub 2012 May 28.
Spontaneous neural activity promotes axon growth in many types of developing neurons, including motoneurons. In motoneurons from a mouse model of spinal muscular atrophy (SMA), defects in axonal growth and presynaptic function correlate with a reduced frequency of spontaneous Ca(2+) transients in axons which are mediated by N-type Ca(2+) channels. To characterize the mechanisms that initiate spontaneous Ca(2+) transients, we investigated the role of voltage-gated sodium channels (VGSCs). We found that low concentrations of the VGSC inhibitors tetrodotoxin (TTX) and saxitoxin (STX) reduce the rate of axon growth in cultured embryonic mouse motoneurons without affecting their survival. STX was 5- to 10-fold more potent than TTX and Ca(2+) imaging confirmed that low concentrations of STX strongly reduce the frequency of spontaneous Ca(2+) transients in somatic and axonal regions. These findings suggest that the Na(V)1.9, a VGSC that opens at low thresholds, could act upstream of spontaneous Ca(2+) transients. qPCR from cultured and laser-microdissected spinal cord motoneurons revealed abundant expression of Na(V)1.9. Na(V)1.9 protein is preferentially localized in axons and growth cones. Suppression of Na(V)1.9 expression reduced axon elongation. Motoneurons from Na(V)1.9(-/-) mice showed the reduced axon growth in combination with reduced spontaneous Ca(2+) transients in the soma and axon terminals. Thus, Na(V)1.9 function appears to be essential for activity-dependent axon growth, acting upstream of spontaneous Ca(2+) elevation through voltage-gated calcium channels (VGCCs). Na(V)1.9 activation could therefore serve as a target for modulating axonal regeneration in motoneuron diseases such as SMA in which presynaptic activity of VGCCs is reduced.
自发性神经活动促进许多类型的发育神经元中的轴突生长,包括运动神经元。在脊髓性肌萎缩症(SMA)的小鼠模型中的运动神经元中,轴突生长和突触前功能的缺陷与轴突中由 N 型钙通道介导的自发性 Ca(2+)瞬变频率降低相关。为了描述引发自发性 Ca(2+)瞬变的机制,我们研究了电压门控钠离子通道(VGSCs)的作用。我们发现,低浓度的 VGSC 抑制剂河豚毒素(TTX)和石房蛤毒素(STX)可降低培养的胚胎小鼠运动神经元的轴突生长速度,而不影响其存活。STX 的效力比 TTX 高 5-10 倍,钙成像证实低浓度的 STX 可强烈降低体和轴突区域自发性 Ca(2+)瞬变的频率。这些发现表明,在低阈值下打开的 VGSC Na(V)1.9 可能是自发性 Ca(2+)瞬变的上游作用因子。培养的和激光微切割的脊髓运动神经元的 qPCR 显示 Na(V)1.9 的丰富表达。Na(V)1.9 蛋白优先定位于轴突和生长锥中。Na(V)1.9 表达的抑制减少了轴突伸长。Na(V)1.9(-/-) 小鼠的运动神经元显示出轴突生长减少,同时在胞体和轴突末梢中的自发性 Ca(2+)瞬变减少。因此,Na(V)1.9 功能似乎对活性依赖性轴突生长至关重要,通过电压门控钙通道(VGCCs)作用于自发性 Ca(2+)升高的上游。因此,Na(V)1.9 的激活可作为调节运动神经元疾病(如 SMA)中轴突再生的靶点,因为在这些疾病中 VGCC 的突触前活性降低。