Suppr超能文献

对 CoCrMo 金属对金属髋关节置换硬相的新认识。

New insights into hard phases of CoCrMo metal-on-metal hip replacements.

机构信息

Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201, USA.

出版信息

J Mech Behav Biomed Mater. 2012 Aug;12:39-49. doi: 10.1016/j.jmbbm.2012.03.013. Epub 2012 Mar 28.

Abstract

The microstructural and mechanical properties of the hard phases in CoCrMo prosthetic alloys in both cast and wrought conditions were examined using transmission electron microscopy and nanoindentation. Besides the known carbides of M(23)C(6)-type (M=Cr, Mo, Co) and M(6)C-type which are formed by either eutectic solidification or precipitation, a new mixed-phase hard constituent has been found in the cast alloys, which is composed of ∼100 nm fine grains. The nanosized grains were identified to be mostly of M(23)C(6) type using nano-beam precession electron diffraction, and the chemical composition varied from grain to grain being either Cr- or Co-rich. In contrast, the carbides within the wrought alloy having the same M(23)C(6) structure were homogeneous, which can be attributed to the repeated heating and deformation steps. Nanoindentation measurements showed that the hardness of the hard phase mixture in the cast specimen was ∼15.7 GPa, while the M(23)C(6) carbides in the wrought alloy were twice as hard (∼30.7 GPa). The origin of the nanostructured hard phase mixture was found to be related to slow cooling during casting. Mixed hard phases were produced at a cooling rate of 0.2 °C/s, whereas single phase carbides were formed at a cooling rate of 50 °C/s. This is consistent with sluggish kinetics and rationalizes different and partly conflicting microstructural results in the literature, and could be a source of variations in the performance of prosthetic devices in-vivo.

摘要

使用透射电子显微镜和纳米压痕技术研究了铸造和锻造状态下 CoCrMo 假体合金中硬相的微观结构和力学性能。除了由共晶凝固或析出形成的已知 M(23)C(6)-型(M=Cr、Mo、Co)和 M(6)C-型碳化物外,在铸造合金中还发现了一种新的混合相硬组成物,由约 100nm 细晶粒组成。使用纳米束进动电子衍射鉴定纳米晶粒主要为 M(23)C(6)型,且晶粒间的化学成分从富 Cr 到富 Co 变化。相比之下,具有相同 M(23)C(6)结构的锻造合金中的碳化物是均匀的,这归因于反复的加热和变形步骤。纳米压痕测量表明,铸造试样中硬相混合物的硬度约为 15.7GPa,而锻造合金中的 M(23)C(6)碳化物硬度是其两倍(约 30.7GPa)。发现纳米结构硬相混合物的起源与铸造过程中的缓慢冷却有关。在冷却速率为 0.2°C/s 时产生混合硬相,而在冷却速率为 50°C/s 时形成单相碳化物。这与缓慢的动力学一致,并合理化了文献中不同的、部分冲突的微观结构结果,并且可能是假体装置在体内性能变化的一个来源。

相似文献

1
New insights into hard phases of CoCrMo metal-on-metal hip replacements.
J Mech Behav Biomed Mater. 2012 Aug;12:39-49. doi: 10.1016/j.jmbbm.2012.03.013. Epub 2012 Mar 28.
2
Alloy Microstructure Dictates Corrosion Modes in THA Modular Junctions.
Clin Orthop Relat Res. 2017 Dec;475(12):3026-3043. doi: 10.1007/s11999-017-5486-3. Epub 2017 Sep 7.
3
Are Damage Modes Related to Microstructure and Material Loss in Severely Damaged CoCrMo Femoral Heads?
Clin Orthop Relat Res. 2021 Sep 1;479(9):2083-2096. doi: 10.1097/CORR.0000000000001819.
6
Abrasion resistance of oxidized zirconium in comparison with CoCrMo and titanium nitride coatings for artificial knee joints.
J Biomed Mater Res B Appl Biomater. 2010 Apr;93(1):244-51. doi: 10.1002/jbm.b.31581.
7
Microstructural and mechanical characterization of six Co-Cr alloys made by conventional casting and selective laser melting.
J Prosthet Dent. 2024 Sep;132(3):646.e1-646.e10. doi: 10.1016/j.prosdent.2024.06.015. Epub 2024 Jul 2.
8
The tribological difference between biomedical steels and CoCrMo-alloys.
J Mech Behav Biomed Mater. 2012 May;9:50-62. doi: 10.1016/j.jmbbm.2012.01.007. Epub 2012 Jan 25.
10
Intergranular pitting corrosion of CoCrMo biomedical implant alloy.
J Biomed Mater Res B Appl Biomater. 2014 May;102(4):850-9. doi: 10.1002/jbm.b.33067. Epub 2013 Dec 26.

引用本文的文献

1
Scratch and Wear Behaviour of Co-Cr-Mo Alloy in Ringer's Lactate Solution.
Materials (Basel). 2023 Apr 6;16(7):2923. doi: 10.3390/ma16072923.
2
ADDISC lumbar disc prosthesis: Analytical and FEA testing of novel implants.
Heliyon. 2023 Feb 4;9(2):e13540. doi: 10.1016/j.heliyon.2023.e13540. eCollection 2023 Feb.
3
Microstructure and electrochemical behavior of contemporary Ti6Al4V implant alloys.
J Bio Tribocorros. 2022 Mar;8(1). doi: 10.1007/s40735-021-00623-3. Epub 2021 Dec 24.
5
Alumina and tricalcium phosphate added CoCr alloy for load-bearing implants.
Addit Manuf. 2020 Dec;36. doi: 10.1016/j.addma.2020.101553. Epub 2020 Aug 24.
6
What Factors Drive Taper Corrosion?
J Arthroplasty. 2018 Sep;33(9):2707-2711. doi: 10.1016/j.arth.2018.03.055. Epub 2018 Mar 30.
7
Tribochemical Characterization and Tribocorrosive Behavior of CoCrMo Alloys: A Review.
Materials (Basel). 2017 Dec 26;11(1):30. doi: 10.3390/ma11010030.
8
Alloy Microstructure Dictates Corrosion Modes in THA Modular Junctions.
Clin Orthop Relat Res. 2017 Dec;475(12):3026-3043. doi: 10.1007/s11999-017-5486-3. Epub 2017 Sep 7.
9
CoCrMo metal-on-metal hip replacements.
Phys Chem Chem Phys. 2013 Jan 21;15(3):746-56. doi: 10.1039/c2cp42968c.

本文引用的文献

1
Graphitic tribological layers in metal-on-metal hip replacements.
Science. 2011 Dec 23;334(6063):1687-90. doi: 10.1126/science.1213902.
2
Direct space structure solution from precession electron diffraction data: Resolving heavy and light scatterers in Pb(13)Mn(9)O(25).
Ultramicroscopy. 2010 Jun;110(7):881-90. doi: 10.1016/j.ultramic.2010.03.012. Epub 2010 Mar 31.
3
Structure solution of the new titanate Li4Ti8Ni3O21 using precession electron diffraction.
Acta Crystallogr B. 2010 Feb;66(Pt 1):60-8. doi: 10.1107/S010876810904631X. Epub 2009 Dec 12.
4
Subsurface changes of a MoM hip implant below different contact zones.
J Mech Behav Biomed Mater. 2009 Apr;2(2):186-91. doi: 10.1016/j.jmbbm.2008.08.002. Epub 2008 Aug 23.
5
Metal-on-metal bearing surfaces.
J Am Acad Orthop Surg. 2009 Feb;17(2):69-76. doi: 10.5435/00124635-200902000-00003.
6
A quantitative analysis of the cone-angle dependence in precession electron diffraction.
Ultramicroscopy. 2008 May;108(6):514-22. doi: 10.1016/j.ultramic.2007.08.004. Epub 2007 Aug 8.
7
Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030.
J Bone Joint Surg Am. 2007 Apr;89(4):780-5. doi: 10.2106/JBJS.F.00222.
8
Precession electron diffraction 1: multislice simulation.
Acta Crystallogr A. 2006 Nov;62(Pt 6):434-43. doi: 10.1107/S0108767306032892. Epub 2006 Oct 21.
9
Rapid structure determination of a metal oxide from pseudo-kinematical electron diffraction data.
Ultramicroscopy. 2006 Jan;106(2):114-22. doi: 10.1016/j.ultramic.2005.06.058. Epub 2005 Jul 28.
10
Microstructural effects on the wear resistance of wrought and as-cast Co-Cr-Mo-C implant alloys.
J Biomed Mater Res A. 2005 Aug 1;74(2):269-74. doi: 10.1002/jbm.a.30392.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验