Suppr超能文献

POOL 服务器:用于蛋白质功能位点预测的机器学习应用程序。

POOL server: machine learning application for functional site prediction in proteins.

机构信息

Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.

出版信息

Bioinformatics. 2012 Aug 1;28(15):2078-9. doi: 10.1093/bioinformatics/bts321. Epub 2012 Jun 1.

Abstract

SUMMARY

We present an automated web server for partial order optimum likelihood (POOL), a machine learning application that combines computed electrostatic and geometric information for high-performance prediction of catalytic residues from 3D structures. Input features consist of THEMATICS electrostatics data and pocket information from ConCavity. THEMATICS measures deviation from typical, sigmoidal titration behavior to identify functionally important residues and ConCavity identifies binding pockets by analyzing the surface geometry of protein structures. Both THEMATICS and ConCavity (structure only) do not require the query protein to have any sequence or structure similarity to other proteins. Hence, POOL is applicable to proteins with novel folds and engineered proteins. As an additional option for cases where sequence homologues are available, users can include evolutionary information from INTREPID for enhanced accuracy in site prediction.

AVAILABILITY

The web site is free and open to all users with no login requirements at http://www.pool.neu.edu.

CONTACT

m.ondrechen@neu.edu

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

我们提出了一个自动化的网络服务器,用于部分订单最优似然(POOL),这是一种机器学习应用程序,它将计算的静电和几何信息结合起来,从 3D 结构中高性能地预测催化残基。输入特征包括 THEMATICS 静电数据和 ConCavity 的口袋信息。THEMATICS 测量偏离典型的、S 型滴定行为的程度,以识别功能重要的残基,而 ConCavity 通过分析蛋白质结构的表面几何形状来识别结合口袋。THEMATICS 和 ConCavity(仅结构)都不需要查询蛋白与其他蛋白具有任何序列或结构相似性。因此,POOL 适用于具有新颖折叠和工程化蛋白的蛋白。作为对具有序列同源物的情况的附加选择,用户可以包括 INTREPID 的进化信息,以提高位点预测的准确性。

可用性

该网站是免费的,对所有用户开放,无需登录要求,网址为 http://www.pool.neu.edu。

联系人

m.ondrechen@neu.edu

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

1
POOL server: machine learning application for functional site prediction in proteins.
Bioinformatics. 2012 Aug 1;28(15):2078-9. doi: 10.1093/bioinformatics/bts321. Epub 2012 Jun 1.
4
Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines.
Protein Sci. 2008 Feb;17(2):333-41. doi: 10.1110/ps.073213608. Epub 2007 Dec 20.
5
INTREPID: a web server for prediction of functionally important residues by evolutionary analysis.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W390-5. doi: 10.1093/nar/gkp339. Epub 2009 May 13.
6
Functional classification of protein 3D structures from predicted local interaction sites.
J Bioinform Comput Biol. 2010 Dec;8 Suppl 1:1-15. doi: 10.1142/s0219720010005166.
7
DR_bind: a web server for predicting DNA-binding residues from the protein structure based on electrostatics, evolution and geometry.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W249-56. doi: 10.1093/nar/gks481. Epub 2012 May 31.
8
ORCAN-a web-based meta-server for real-time detection and functional annotation of orthologs.
Bioinformatics. 2017 Apr 15;33(8):1224-1226. doi: 10.1093/bioinformatics/btw825.
9
DP-Bind: a web server for sequence-based prediction of DNA-binding residues in DNA-binding proteins.
Bioinformatics. 2007 Mar 1;23(5):634-6. doi: 10.1093/bioinformatics/btl672. Epub 2007 Jan 19.
10
Selective prediction of interaction sites in protein structures with THEMATICS.
BMC Bioinformatics. 2007 Apr 9;8:119. doi: 10.1186/1471-2105-8-119.

引用本文的文献

1
Biochemical Activity of 17 Cancer-Associated Variants of DNA Polymerase Kappa Predicted by Electrostatic Properties.
Chem Res Toxicol. 2023 Nov 20;36(11):1789-1803. doi: 10.1021/acs.chemrestox.3c00233. Epub 2023 Oct 26.
2
MAHOMES II: A webserver for predicting if a metal binding site is enzymatic.
bioRxiv. 2023 Mar 12:2023.03.08.531790. doi: 10.1101/2023.03.08.531790.
3
MAHOMES II: A webserver for predicting if a metal binding site is enzymatic.
Protein Sci. 2023 Apr;32(4):e4626. doi: 10.1002/pro.4626.
4
Identification and characterization of alternative sites and molecular probes for SARS-CoV-2 target proteins.
Front Chem. 2022 Oct 31;10:1017394. doi: 10.3389/fchem.2022.1017394. eCollection 2022.
6
Machine learning differentiates enzymatic and non-enzymatic metals in proteins.
Nat Commun. 2021 Jun 17;12(1):3712. doi: 10.1038/s41467-021-24070-3.
7
Probing remote residues important for catalysis in Escherichia coli ornithine transcarbamoylase.
PLoS One. 2020 Feb 6;15(2):e0228487. doi: 10.1371/journal.pone.0228487. eCollection 2020.
9
Mechanistic and Evolutionary Insights from the Reciprocal Promiscuity of Two Pyridoxal Phosphate-dependent Enzymes.
J Biol Chem. 2016 Sep 16;291(38):19873-87. doi: 10.1074/jbc.M116.739557. Epub 2016 Jul 29.

本文引用的文献

1
A tale of two isomerases: compact versus extended active sites in ketosteroid isomerase and phosphoglucose isomerase.
Biochemistry. 2011 Nov 1;50(43):9283-95. doi: 10.1021/bi201089v. Epub 2011 Oct 4.
5
Functional classification of protein 3D structures from predicted local interaction sites.
J Bioinform Comput Biol. 2010 Dec;8 Suppl 1:1-15. doi: 10.1142/s0219720010005166.
6
Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure.
PLoS Comput Biol. 2009 Dec;5(12):e1000585. doi: 10.1371/journal.pcbi.1000585. Epub 2009 Dec 4.
7
INTREPID: a web server for prediction of functionally important residues by evolutionary analysis.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W390-5. doi: 10.1093/nar/gkp339. Epub 2009 May 13.
9
Selective prediction of interaction sites in protein structures with THEMATICS.
BMC Bioinformatics. 2007 Apr 9;8:119. doi: 10.1186/1471-2105-8-119.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验