Li Mingjie, Husic Nada, Lin Ying, Snider B Joy
Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, USA.
J Vis Exp. 2012 May 24(63):e4031. doi: 10.3791/4031.
Efficient gene delivery in the central nervous system (CNS) is important in studying gene functions, modeling neurological diseases and developing therapeutic approaches. Lentiviral vectors are attractive tools in transduction of neurons and other cell types in CNS as they transduce both dividing and non-dividing cells, support sustained expression of transgenes, and have relatively large packaging capacity and low toxicity. Lentiviral vectors have been successfully used in transducing many neural cell types in vitro and in animals. Great efforts have been made to develop lentiviral vectors with improved biosafety and efficiency for gene delivery. The current third generation replication-defective and self-inactivating (SIN) lentiviral vectors are depicted in Figure 1. The required elements for vector packaging are split into four plasmids. In the lentiviral transfer plasmid, the U3 region in the 5' long terminal repeat (LTR) is replaced with a strong promoter from another virus. This modification allows the transcription of the vector sequence independent of HIV-1 Tat protein that is normally required for HIV gene expression. The packaging signal (Ψ) is essential for encapsidation and the Rev-responsive element (RRE) is required for producing high titer vectors. The central polypurine tract (cPPT) is important for nuclear import of the vector DNA, a feature required for transducing non-dividing cells. In the 3' LTR, the cis-regulatory sequences are completely removed from the U3 region. This deletion is copied to 5' LTR after reverse transcription, resulting in transcriptional inactivation of both LTRs. Plasmid pMDLg/pRRE contains HIV-1 gag/pol genes, which provide structural proteins and reverse transcriptase. pRSV-Rev encodes Rev which binds to the RRE for efficient RNA export from the nucleus. pCMV-G encodes the vesicular stomatitis virus glycoprotein (VSV-G) that replaces HIV-1 Env. VSV-G expands the tropism of the vectors and allows concentration via ultracentrifugation. All the genes encoding the accessory proteins, including Vif, Vpr, Vpu, and Nef are excluded in the packaging system. The production and manipulation of lentiviral vectors should be carried out according to NIH guidelines for research involving recombinant DNA (http://oba.od.nih.gov/oba/rac/Guidelines/NIH_Guidelines.pdf). An approval from individual Institutional Biological and Chemical Safety Committee may be required before using lentiviral vectors. Lentiviral vectors are commonly produced by cotransfection of 293T cells with lentiviral transfer plasmid and the helper plasmids encoding the proteins required for vector packaging. Many lentiviral transfer plasmids and helper plasmids can be obtained from Addgene, a non-profit plasmid repository (http://www.addgene.org/). Some stable packaging cell lines have been developed, but these systems provide less flexibility and their packaging efficiency generally declines over time. Commercially available transfection kits may support high efficiency of transfection, but they can be very expensive for large scale vector preparations. Calcium phosphate precipitation methods provide highly efficient transfection of 293T cells and thus provide a reliable and cost effective approach for lentiviral vector production. In this protocol, we produce lentiviral vectors by cotransfection of 293T cells with four plasmids based on the calcium phosphate precipitation principle, followed by purification and concentration with ultracentrifugation through a 20% sucrose cushion. The vector titers are determined by fluorescence- activated cell sorting (FACS) analysis or by real time qPCR. The production and titration of lentiviral vectors in this protocol can be finished with 9 days. We provide an example of transducing these vectors into murine neocortical cultures containing both neurons and astrocytes. We demonstrate that lentiviral vectors support high efficiency of transduction and cell type-specific gene expression in primary cultured cells from CNS.
在中枢神经系统(CNS)中实现高效的基因传递对于研究基因功能、构建神经疾病模型以及开发治疗方法至关重要。慢病毒载体是在CNS中对神经元和其他细胞类型进行转导的有吸引力的工具,因为它们能够转导分裂细胞和非分裂细胞,支持转基因的持续表达,并且具有相对较大的包装容量和低毒性。慢病毒载体已成功用于体外和动物体内多种神经细胞类型的转导。人们已经做出了巨大努力来开发具有更高生物安全性和基因传递效率的慢病毒载体。图1展示了当前的第三代复制缺陷型和自我失活(SIN)慢病毒载体。载体包装所需的元件被分成四个质粒。在慢病毒转移质粒中,5'长末端重复序列(LTR)中的U3区域被另一种病毒的强启动子所取代。这种修饰使得载体序列的转录独立于HIV-1 Tat蛋白,而HIV基因表达通常需要该蛋白。包装信号(Ψ)对于衣壳化至关重要,而Rev反应元件(RRE)对于产生高滴度载体是必需的。中央多嘌呤序列(cPPT)对于载体DNA的核输入很重要,这是转导非分裂细胞所需的一个特征。在3' LTR中,顺式调控序列从U3区域被完全去除。这种缺失在逆转录后被复制到5' LTR,导致两个LTR的转录失活。质粒pMDLg/pRRE包含HIV-1 gag/pol基因,其提供结构蛋白和逆转录酶。pRSV-Rev编码Rev,其与RRE结合以实现从细胞核高效输出RNA。pCMV-G编码水泡性口炎病毒糖蛋白(VSV-G),其取代HIV-1 Env。VSV-G扩展了载体的嗜性,并允许通过超速离心进行浓缩。包装系统中排除了所有编码辅助蛋白的基因,包括Vif、Vpr、Vpu和Nef。慢病毒载体的生产和操作应根据美国国立卫生研究院(NIH)关于涉及重组DNA研究的指南(http://oba.od.nih.gov/oba/rac/Guidelines/NIH_Guidelines.pdf)进行。在使用慢病毒载体之前,可能需要获得单个机构生物和化学安全委员会的批准。慢病毒载体通常通过将293T细胞与慢病毒转移质粒以及编码载体包装所需蛋白质的辅助质粒共转染来生产。许多慢病毒转移质粒和辅助质粒可从非营利性质粒库Addgene(http://www.addgene.org/)获得。已经开发了一些稳定的包装细胞系,但这些系统的灵活性较差且其包装效率通常会随着时间下降。市售的转染试剂盒可能支持高效转染,但对于大规模载体制备来说可能非常昂贵。磷酸钙沉淀法可实现293T细胞的高效转染,因此为慢病毒载体生产提供了一种可靠且经济高效的方法。在本方案中,我们基于磷酸钙沉淀原理通过将293T细胞与四个质粒共转染来生产慢病毒载体,随后通过20%蔗糖垫层超速离心进行纯化和浓缩。通过荧光激活细胞分选(FACS)分析或实时定量PCR来测定载体滴度。本方案中慢病毒载体的生产和滴定可在9天内完成。我们提供了一个将这些载体转导到包含神经元和星形胶质细胞的小鼠新皮质培养物中的示例。我们证明慢病毒载体在来自CNS的原代培养细胞中支持高效转导和细胞类型特异性基因表达。