Suppr超能文献

使用测序RAD标签对模式生物和非模式生物进行群体基因组分析。

Population genomic analysis of model and nonmodel organisms using sequenced RAD tags.

作者信息

Hohenlohe Paul A, Catchen Julian, Cresko William A

机构信息

Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR, USA.

出版信息

Methods Mol Biol. 2012;888:235-60. doi: 10.1007/978-1-61779-870-2_14.

Abstract

The evolutionary processes of mutation, migration, genetic drift, and natural selection shape patterns of genetic variation among individuals, populations, and species, and they can do so differentially across genomes. The field of population genomics provides a comprehensive genome-scale view of these processes, even beyond traditional model organisms. Until recently, genome-wide studies of genetic variation have been prohibitively expensive. However, next-generation sequencing (NGS) technologies are revolutionizing the field of population genomics, allowing for genetic analysis at scales not previously possible even in organisms for which few genomic resources presently exist. To speed this revolution in evolutionary genetics, we and colleagues developed Restriction site Associated DNA (RAD) sequencing, a method that uses Illumina NGS to simultaneously type and score tens to hundreds of thousands of single nucleotide polymorphism (SNP) markers in hundreds of individuals for minimal investment of resources. The core molecular protocol is described elsewhere in this volume, which can be modified to suit a diversity of evolutionary genetic questions. In this chapter, we outline the conceptual framework of population genomics, relate genomic patterns of variation to evolutionary processes, and discuss how RAD sequencing can be used to study population genomics. In addition, we discuss bioinformatic considerations that arise from unique aspects of NGS data as compared to traditional marker based approaches, and we outline some general analytical approaches for RAD-seq and similar data, including a computational pipeline that we developed called Stacks. This software can be used for the analysis of RAD-seq data in organisms with and without a reference genome. Nonetheless, the development of analytical tools remains in its infancy, and further work is needed to fully quantify sampling variance and biases in these data types. As data-gathering technology continues to advance, our ability to understand genomic evolution in natural populations will be limited more by conceptual and analytical weaknesses than by the amount of molecular data.

摘要

突变、迁移、遗传漂变和自然选择等进化过程塑造了个体、种群和物种间的遗传变异模式,并且这些过程在基因组中的作用存在差异。群体基因组学领域提供了这些过程在全基因组尺度上的全面视角,甚至超越了传统模式生物。直到最近,全基因组遗传变异研究的成本一直高得令人望而却步。然而,新一代测序(NGS)技术正在彻底改变群体基因组学领域,使得即使在目前几乎没有基因组资源的生物中,也能够进行前所未有的大规模遗传分析。为了加速进化遗传学领域的这一变革,我们与同事开发了限制性位点相关DNA(RAD)测序技术,该方法利用Illumina NGS技术,以最少的资源投入,同时对数百个个体中的数万个单核苷酸多态性(SNP)标记进行分型和评分。核心分子实验方案在本卷的其他地方有描述,可以根据各种进化遗传学问题进行修改。在本章中,我们概述了群体基因组学的概念框架,将基因组变异模式与进化过程联系起来,并讨论了如何利用RAD测序来研究群体基因组学。此外,我们还讨论了与传统基于标记的方法相比,NGS数据的独特方面所引发的生物信息学考量,并概述了一些针对RAD-seq和类似数据的通用分析方法,包括我们开发的名为Stacks的计算流程。该软件可用于分析有参考基因组和无参考基因组的生物的RAD-seq数据。尽管如此,分析工具的开发仍处于起步阶段,需要进一步开展工作以全面量化这些数据类型中的抽样方差和偏差。随着数据收集技术的不断进步,我们理解自然种群中基因组进化的能力将更多地受到概念和分析方面的弱点限制,而非分子数据的数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验