Suppr超能文献

针插入速度对对流增强递送中回流的影响。

Influence of needle insertion speed on backflow for convection-enhanced delivery.

作者信息

Casanova Fernando, Carney Paul R, Sarntinoranont Malisa

机构信息

Escuela de Ingenieria Mecanica, Universidad del Valle, Carrera 13 No. 100-00, Cali, Colombia.

出版信息

J Biomech Eng. 2012 Apr;134(4):041006. doi: 10.1115/1.4006404.

Abstract

Fluid flow back along the outer surface of a needle (backflow) can be a significant problem during the direct infusion of drugs into brain tissues for procedures such as convection-enhanced delivery (CED). This study evaluates the effects of needle insertion speed (0.2 and 1.8 mm/s) as well as needle diameter and flow rate on the extent of backflow and local damage to surrounding tissues. Infusion experiments were conducted on a transparent tissue phantom, 0.6% (w/v) agarose hydrogel, to visualize backflow. Needle insertion experiments were also performed to evaluate local damage at the needle tip and to back out the prestress in the surrounding media for speed conditions where localized damage was not excessive. Prestress values were then used in an analytical model of backflow. At the higher insertion speed (1.8 mm/s), local insertion damage was found to be reduced and backflow was decreased. The compressive prestress at the needle-tissue interface was estimated to be approximately constant (0.812 kPa), and backflow distances were similar regardless of needle gauge (22, 26, and 32 gauge). The analytical model underestimated backflow distances at low infusion flow rates and overestimated backflow at higher flow rates. At the lower insertion speed (0.2 mm/s), significant backflow was measured. This corresponded to an observed accumulation of material at the needle tip which produced a gap between the needle and the surrounding media. Local tissue damage was also evaluated in excised rat brain tissues, and insertion tests show similar rate-dependent accumulation of tissue at the needle tip at the lower insertion speed. These results indicate that local tissue damage and backflow may be avoided by using an appropriate insertion speed.

摘要

在诸如对流增强递送(CED)等将药物直接注入脑组织的过程中,液体沿针的外表面回流(逆流)可能是一个重大问题。本研究评估了针的插入速度(0.2和1.8毫米/秒)以及针的直径和流速对逆流程度和对周围组织局部损伤的影响。在透明组织模型0.6%(w/v)琼脂糖水凝胶上进行灌注实验以观察逆流情况。还进行了针插入实验,以评估针尖处的局部损伤,并在局部损伤不过度的速度条件下消除周围介质中的预应力。然后将预应力值用于逆流分析模型。在较高的插入速度(1.8毫米/秒)下,发现局部插入损伤减少,逆流也减少。针 - 组织界面处的压缩预应力估计大致恒定(0.812千帕),并且无论针的规格(22号、26号和32号)如何,逆流距离都相似。该分析模型在低灌注流速下低估了逆流距离,而在高流速下高估了逆流。在较低的插入速度(0.2毫米/秒)下,测量到明显的逆流。这对应于在针尖处观察到的物质积累,这在针与周围介质之间产生了间隙。还在切除的大鼠脑组织中评估了局部组织损伤,插入测试表明在较低插入速度下,在针尖处也有类似的与速率相关的组织积累。这些结果表明,通过使用适当的插入速度可以避免局部组织损伤和逆流。

相似文献

1
Influence of needle insertion speed on backflow for convection-enhanced delivery.
J Biomech Eng. 2012 Apr;134(4):041006. doi: 10.1115/1.4006404.
3
In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain.
J Neurosci Methods. 2014 Nov 30;237:79-89. doi: 10.1016/j.jneumeth.2014.08.012. Epub 2014 Aug 20.
4
Backflow-free catheters for efficient and safe convection-enhanced delivery of therapeutics.
Med Eng Phys. 2017 Jul;45:15-24. doi: 10.1016/j.medengphy.2017.02.018. Epub 2017 May 3.
7
Experimental and modelling characterisation of adjustable hollow Micro-needle delivery systems.
Med Eng Phys. 2017 Nov;49:148-156. doi: 10.1016/j.medengphy.2017.08.012. Epub 2017 Sep 7.
8
Polymer-coated cannulas for the reduction of backflow during intraparenchymal infusions.
J Mater Sci Mater Med. 2012 Aug;23(8):2037-46. doi: 10.1007/s10856-012-4652-0. Epub 2012 Jun 19.
9
Designing and testing of backflow-free catheters.
J Biomech Eng. 2011 Jun;133(6):061003. doi: 10.1115/1.4004286.
10

引用本文的文献

1
Design and Characterization of Pressure Monitoring and Insertion system for Intraparenchymal Convection Enhanced Delivery.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10341013.
2
Convection-Enhanced Delivery in Children: Techniques and Applications.
Adv Tech Stand Neurosurg. 2022;45:199-228. doi: 10.1007/978-3-030-99166-1_6.
3
Convection-enhanced delivery with controlled catheter movement: A parametric finite element analysis.
Int J Numer Method Biomed Eng. 2022 Sep;38(9):e3635. doi: 10.1002/cnm.3635. Epub 2022 Jul 15.
5
Design and Validation of a Multi-Point Injection Technology for MR-Guided Convection Enhanced Delivery in the Brain.
Front Med Technol. 2021 Oct 14;3:725844. doi: 10.3389/fmedt.2021.725844. eCollection 2021.
6
Reducing Passive Drug Diffusion from Electrophoretic Drug Delivery Devices through Co-Ion Engineering.
Adv Sci (Weinh). 2021 Apr 10;8(12):2003995. doi: 10.1002/advs.202003995. eCollection 2021 Jun.
7
Controlled Catheter Movement Affects Dye Dispersal Volume in Agarose Gel Brain Phantoms.
Pharmaceutics. 2020 Aug 11;12(8):753. doi: 10.3390/pharmaceutics12080753.
8
Convection Enhanced Delivery for Diffuse Intrinsic Pontine Glioma: Review of a Single Institution Experience.
Pharmaceutics. 2020 Jul 14;12(7):660. doi: 10.3390/pharmaceutics12070660.

本文引用的文献

1
Designing and testing of backflow-free catheters.
J Biomech Eng. 2011 Jun;133(6):061003. doi: 10.1115/1.4004286.
2
An evaluation of the relationships between catheter design and tissue mechanics in achieving high-flow convection-enhanced delivery.
J Neurosci Methods. 2011 Jul 15;199(1):87-97. doi: 10.1016/j.jneumeth.2011.04.027. Epub 2011 Apr 27.
3
Optically based-indentation technique for acute rat brain tissue slices and thin biomaterials.
J Biomed Mater Res B Appl Biomater. 2011 Apr;97(1):84-95. doi: 10.1002/jbm.b.31789. Epub 2011 Feb 2.
4
Characterization of an Anisotropic Hydrogel Tissue Substrate for Infusion Testing.
J Appl Polym Sci Symp. 2009 Nov 15;114(4):1992-2002. doi: 10.1002/app.30639.
6
Optimized cannula design and placement for convection-enhanced delivery in rat striatum.
J Neurosci Methods. 2010 Mar 15;187(1):46-51. doi: 10.1016/j.jneumeth.2009.12.008. Epub 2009 Dec 22.
7
Fluid infusions from catheters into elastic tissue: I. Azimuthally symmetric backflow in homogeneous media.
Phys Med Biol. 2010 Jan 7;55(1):281-304. doi: 10.1088/0031-9155/55/1/017.
8
Convection-enhanced delivery in the treatment of epilepsy.
Neurotherapeutics. 2009 Apr;6(2):344-51. doi: 10.1016/j.nurt.2009.01.017.
9
In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales.
IEEE Trans Biomed Eng. 2009 Jan;56(1):45-53. doi: 10.1109/TBME.2008.2003261.
10
Convection-enhanced delivery of nanocarriers for the treatment of brain tumors.
Biomaterials. 2009 Apr;30(12):2302-18. doi: 10.1016/j.biomaterials.2009.01.003. Epub 2009 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验