Wentzel Alexander, Bruheim Per, Øverby Anders, Jakobsen Øyvind M, Sletta Håvard, Omara Walid A M, Hodgson David A, Ellingsen Trond E
Department of Biotechnology, SINTEF Materials and Chemistry, 7465, Trondheim, Norway.
BMC Syst Biol. 2012 Jun 7;6:59. doi: 10.1186/1752-0509-6-59.
Systems biology approaches to study metabolic switching in Streptomyces coelicolor A3(2) depend on cultivation conditions ensuring high reproducibility and distinct phases of culture growth and secondary metabolite production. In addition, biomass concentrations must be sufficiently high to allow for extensive time-series sampling before occurrence of a given nutrient depletion for transition triggering. The present study describes for the first time the development of a dedicated optimized submerged batch fermentation strategy as the basis for highly time-resolved systems biology studies of metabolic switching in S. coelicolor A3(2).
By a step-wise approach, cultivation conditions and two fully defined cultivation media were developed and evaluated using strain M145 of S. coelicolor A3(2), providing a high degree of cultivation reproducibility and enabling reliable studies of the effect of phosphate depletion and L-glutamate depletion on the metabolic transition to antibiotic production phase. Interestingly, both of the two carbon sources provided, D-glucose and L-glutamate, were found to be necessary in order to maintain high growth rates and prevent secondary metabolite production before nutrient depletion. Comparative analysis of batch cultivations with (i) both L-glutamate and D-glucose in excess, (ii) L-glutamate depletion and D-glucose in excess, (iii) L-glutamate as the sole source of carbon and (iv) D-glucose as the sole source of carbon, reveal a complex interplay of the two carbon sources in the bacterium's central carbon metabolism.
The present study presents for the first time a dedicated cultivation strategy fulfilling the requirements for systems biology studies of metabolic switching in S. coelicolor A3(2). Key results from labelling and cultivation experiments on either or both of the two carbon sources provided indicate that in the presence of D-glucose, L-glutamate was the preferred carbon source, while D-glucose alone appeared incapable of maintaining culture growth, likely due to a metabolic bottleneck at the oxidation of pyruvate to acetyl-CoA.
采用系统生物学方法研究天蓝色链霉菌A3(2)中的代谢转换,依赖于能确保高重现性以及培养生长和次级代谢产物产生的不同阶段的培养条件。此外,生物量浓度必须足够高,以便在发生给定营养物质耗尽以触发转变之前进行广泛的时间序列采样。本研究首次描述了一种专门优化的深层分批发酵策略的开发,作为对天蓝色链霉菌A3(2)中代谢转换进行高度时间分辨的系统生物学研究的基础。
通过逐步方法,开发并使用天蓝色链霉菌A3(2)的M145菌株评估了培养条件和两种完全确定的培养基,提供了高度的培养重现性,并能够可靠地研究磷酸盐耗尽和L-谷氨酸耗尽对向抗生素生产阶段代谢转变的影响。有趣的是,发现所提供的两种碳源D-葡萄糖和L-谷氨酸都是维持高生长速率和防止营养物质耗尽前次级代谢产物产生所必需的。对分批培养进行比较分析,包括(i)L-谷氨酸和D-葡萄糖均过量,(ii)L-谷氨酸耗尽而D-葡萄糖过量,(iii)L-谷氨酸作为唯一碳源,以及(iv)D-葡萄糖作为唯一碳源,揭示了这两种碳源在细菌中心碳代谢中的复杂相互作用。
本研究首次提出了一种满足天蓝色链霉菌A3(2)中代谢转换系统生物学研究要求的专门培养策略。对所提供的两种碳源中的一种或两种进行标记和培养实验的关键结果表明,在存在D-葡萄糖的情况下,L-谷氨酸是首选碳源,而单独的D-葡萄糖似乎无法维持培养生长,这可能是由于丙酮酸氧化为乙酰辅酶A时的代谢瓶颈所致。