Suppr超能文献

基于 Viterbi 算法的纳米孔 DNA 碱基读取。

DNA base-calling from a nanopore using a Viterbi algorithm.

出版信息

Biophys J. 2012 May 16;102(10):L37-9. doi: 10.1016/j.bpj.2012.04.009. Epub 2012 May 15.

Abstract

Nanopore-based DNA sequencing is the most promising third-generation sequencing method. It has superior read length, speed, and sample requirements compared with state-of-the-art second-generation methods. However, base-calling still presents substantial difficulty because the resolution of the technique is limited compared with the measured signal/noise ratio. Here we demonstrate a method to decode 3-bp-resolution nanopore electrical measurements into a DNA sequence using a Hidden Markov model. This method shows tremendous potential for accuracy (~98%), even with a poor signal/noise ratio.

摘要

基于纳米孔的 DNA 测序是最有前途的第三代测序方法。与最先进的第二代方法相比,它具有优越的读取长度、速度和样品要求。然而,碱基调用仍然存在很大的困难,因为与测量的信号/噪声比相比,该技术的分辨率有限。在这里,我们展示了一种使用隐马尔可夫模型将 3 个碱基分辨率的纳米孔电测量结果解码为 DNA 序列的方法。即使在信噪比较差的情况下,该方法也具有很高的准确性(~98%)。

相似文献

1
DNA base-calling from a nanopore using a Viterbi algorithm.
Biophys J. 2012 May 16;102(10):L37-9. doi: 10.1016/j.bpj.2012.04.009. Epub 2012 May 15.
2
Increasing the accuracy of nanopore DNA sequencing using a time-varying cross membrane voltage.
Nat Biotechnol. 2019 Jun;37(6):651-656. doi: 10.1038/s41587-019-0096-0. Epub 2019 Apr 22.
3
Threading DNA through nanopores for biosensing applications.
J Phys Condens Matter. 2015 Jul 15;27(27):273101. doi: 10.1088/0953-8984/27/27/273101. Epub 2015 Jun 10.
4
The emergence of nanopores in next-generation sequencing.
Nanotechnology. 2015 Feb 20;26(7):074003. doi: 10.1088/0957-4484/26/7/074003. Epub 2015 Feb 2.
5
De novo sequencing and variant calling with nanopores using PoreSeq.
Nat Biotechnol. 2015 Oct;33(10):1087-91. doi: 10.1038/nbt.3360. Epub 2015 Sep 9.
6
Nanopore sequencing data analysis: state of the art, applications and challenges.
Brief Bioinform. 2018 Nov 27;19(6):1256-1272. doi: 10.1093/bib/bbx062.
7
9
Theoretical studies on key factors in DNA sequencing using atomically thin molybdenum disulfide nanopores.
Phys Chem Chem Phys. 2018 Nov 21;20(45):28886-28893. doi: 10.1039/c8cp06167j.
10
Challenges of Single-Molecule DNA Sequencing with Solid-State Nanopores.
Adv Exp Med Biol. 2019;1129:131-142. doi: 10.1007/978-981-13-6037-4_9.

引用本文的文献

1
Computational analysis of DNA methylation from long-read sequencing.
Nat Rev Genet. 2025 Mar 28. doi: 10.1038/s41576-025-00822-5.
2
Enzymatic synthesis and nanopore sequencing of 12-letter supernumerary DNA.
Nat Commun. 2023 Oct 26;14(1):6820. doi: 10.1038/s41467-023-42406-z.
3
Beyond assembly: the increasing flexibility of single-molecule sequencing technology.
Nat Rev Genet. 2023 Sep;24(9):627-641. doi: 10.1038/s41576-023-00600-1. Epub 2023 May 9.
4
Modification mapping by nanopore sequencing.
Front Genet. 2022 Oct 28;13:1037134. doi: 10.3389/fgene.2022.1037134. eCollection 2022.
5
Expanding the Molecular Alphabet of DNA-Based Data Storage Systems with Neural Network Nanopore Readout Processing.
Nano Lett. 2022 Mar 9;22(5):1905-1914. doi: 10.1021/acs.nanolett.1c04203. Epub 2022 Feb 25.
6
Applications and potentials of nanopore sequencing in the (epi)genome and (epi)transcriptome era.
Innovation (Camb). 2021 Aug 11;2(4):100153. doi: 10.1016/j.xinn.2021.100153. eCollection 2021 Nov 28.
7
Uncertainties in synthetic DNA-based data storage.
Nucleic Acids Res. 2021 Jun 4;49(10):5451-5469. doi: 10.1093/nar/gkab230.
8
High-Fidelity Capture, Threading, and Infinite-Depth Sequencing of Single DNA Molecules with a Double-Nanopore System.
ACS Nano. 2020 Nov 24;14(11):15566-15576. doi: 10.1021/acsnano.0c06191. Epub 2020 Nov 11.
9
Wavelet Denoising of High-Bandwidth Nanopore and Ion-Channel Signals.
Nano Lett. 2019 Feb 13;19(2):1090-1097. doi: 10.1021/acs.nanolett.8b04388. Epub 2019 Jan 7.
10
Graphene Nanopores for Protein Sequencing.
Adv Funct Mater. 2016 Jul 19;26(27):4830-4838. doi: 10.1002/adfm.201601272. Epub 2016 Jun 9.

本文引用的文献

1
Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics.
J Phys Chem C Nanomater Interfaces. 2012 Feb 9;116(5):3376-3393. doi: 10.1021/jp210641j. Epub 2012 Jan 9.
2
Nucleotide discrimination with DNA immobilized in the MspA nanopore.
PLoS One. 2011;6(10):e25723. doi: 10.1371/journal.pone.0025723. Epub 2011 Oct 4.
3
Nanopore Sequencing: Electrical Measurements of the Code of Life.
IEEE Trans Nanotechnol. 2010 May 1;9(3):281-294. doi: 10.1109/TNANO.2010.2044418.
4
Pattern recognition-informed feedback for nanopore detector cheminformatics.
Adv Exp Med Biol. 2010;680:99-108. doi: 10.1007/978-1-4419-5913-3_12.
5
Multiple base-recognition sites in a biological nanopore: two heads are better than one.
Angew Chem Int Ed Engl. 2010;49(3):556-9. doi: 10.1002/anie.200905483.
6
The challenges of sequencing by synthesis.
Nat Biotechnol. 2009 Nov;27(11):1013-23. doi: 10.1038/nbt.1585. Epub 2009 Nov 6.
7
The potential and challenges of nanopore sequencing.
Nat Biotechnol. 2008 Oct;26(10):1146-53. doi: 10.1038/nbt.1495.
8
Beyond the Gene Chip.
Bell Labs Tech J. 2005;10(3):5-22. doi: 10.1002/bltj.20102.
9
Nucleotide identification and orientation discrimination of DNA homopolymers immobilized in a protein nanopore.
Nano Lett. 2008 Sep;8(9):3029-34. doi: 10.1021/nl802312f. Epub 2008 Aug 13.
10
Bioinformatics challenges of new sequencing technology.
Trends Genet. 2008 Mar;24(3):142-9. doi: 10.1016/j.tig.2007.12.006. Epub 2008 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验