Suppr超能文献

不同质量 LSO 闪烁体的全身体 PET 扫描仪最佳配置:一项模拟研究。

Optimal whole-body PET scanner configurations for different volumes of LSO scintillator: a simulation study.

机构信息

Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.

出版信息

Phys Med Biol. 2012 Jul 7;57(13):4077-94. doi: 10.1088/0031-9155/57/13/4077. Epub 2012 Jun 7.

Abstract

The axial field of view (AFOV) of the current generation of clinical whole-body PET scanners range from 15-22 cm, which limits sensitivity and renders applications such as whole-body dynamic imaging or imaging of very low activities in whole-body cellular tracking studies, almost impossible. Generally, extending the AFOV significantly increases the sensitivity and count-rate performance. However, extending the AFOV while maintaining detector thickness has significant cost implications. In addition, random coincidences, detector dead time, and object attenuation may reduce scanner performance as the AFOV increases. In this paper, we use Monte Carlo simulations to find the optimal scanner geometry (i.e. AFOV, detector thickness and acceptance angle) based on count-rate performance for a range of scintillator volumes ranging from 10 to 93 l with detector thickness varying from 5 to 20 mm. We compare the results to the performance of a scanner based on the current Siemens Biograph mCT geometry and electronics. Our simulation models were developed based on individual components of the Siemens Biograph mCT and were validated against experimental data using the NEMA NU-2 2007 count-rate protocol. In the study, noise-equivalent count rate (NECR) was computed as a function of maximum ring difference (i.e. acceptance angle) and activity concentration using a 27 cm diameter, 200 cm uniformly filled cylindrical phantom for each scanner configuration. To reduce the effect of random coincidences, we implemented a variable coincidence time window based on the length of the lines of response, which increased NECR performance up to 10% compared to using a static coincidence time window for scanners with a large maximum ring difference values. For a given scintillator volume, the optimal configuration results in modest count-rate performance gains of up to 16% compared to the shortest AFOV scanner with the thickest detectors. However, the longest AFOV of approximately 2 m with 20 mm thick detectors resulted in performance gains of 25-31 times higher NECR relative to the current Siemens Biograph mCT scanner configuration.

摘要

当前临床全身 PET 扫描仪的轴向视野(AFOV)范围为 15-22cm,这限制了灵敏度,使得全身动态成像或全身细胞跟踪研究中极低活性的成像等应用几乎不可能实现。通常,扩大 AFOV 会显著提高灵敏度和计数率性能。然而,在保持探测器厚度的情况下扩大 AFOV 会带来显著的成本影响。此外,随着 AFOV 的增加,随机符合事件、探测器死时间和物体衰减可能会降低扫描仪的性能。在本文中,我们使用蒙特卡罗模拟来根据计数率性能找到最佳的扫描仪几何形状(即 AFOV、探测器厚度和接收角),适用于范围从 10 到 93 升的各种闪烁体体积,探测器厚度从 5 到 20 毫米不等。我们将结果与基于当前西门子 Biograph mCT 几何形状和电子设备的扫描仪的性能进行了比较。我们的模拟模型是基于西门子 Biograph mCT 的各个组件开发的,并使用 NEMA NU-2 2007 计数率协议通过实验数据进行了验证。在研究中,使用直径为 27cm、长度为 200cm 的均匀填充圆柱形体模,针对每种扫描仪配置,通过最大环差(即接收角)和活动浓度计算了噪声等效计数率(NECR)。为了减少随机符合事件的影响,我们根据响应线的长度实现了可变的符合时间窗口,与使用最大环差值较大的静态符合时间窗口相比,这提高了 NECR 性能达 10%。对于给定的闪烁体体积,与最厚探测器的最短 AFOV 扫描仪相比,最佳配置可使计数率性能提高高达 16%。然而,最长的 AFOV 约为 2m,使用 20mm 厚的探测器,相对于当前的西门子 Biograph mCT 扫描仪配置,NECR 的性能增益高达 25-31 倍。

相似文献

1
Optimal whole-body PET scanner configurations for different volumes of LSO scintillator: a simulation study.
Phys Med Biol. 2012 Jul 7;57(13):4077-94. doi: 10.1088/0031-9155/57/13/4077. Epub 2012 Jun 7.
4
Accurate modeling and performance evaluation of a total-body pet scanner using Monte Carlo simulations.
Med Phys. 2023 Nov;50(11):6815-6827. doi: 10.1002/mp.16707. Epub 2023 Sep 4.
7
Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness.
Phys Med Biol. 2013 Jun 21;58(12):3995-4012. doi: 10.1088/0031-9155/58/12/3995. Epub 2013 May 17.
8
Effective count rates for PET scanners with reduced and extended axial field of view.
Phys Med Biol. 2011 Jun 21;56(12):3629-43. doi: 10.1088/0031-9155/56/12/011. Epub 2011 May 25.
9
Monte Carlo simulation of sensitivity and NECR of an entire-body PET scanner.
Radiol Phys Technol. 2014 Jul;7(2):203-10. doi: 10.1007/s12194-013-0253-y. Epub 2013 Dec 24.
10
Count rate performance of brain-dedicated PET scanners: a Monte Carlo simulation study.
Phys Med Biol. 2019 Oct 31;64(21):215013. doi: 10.1088/1361-6560/ab452f.

引用本文的文献

1
Advancing the Collaboration Between Imaging and Radiation Oncology.
Semin Radiat Oncol. 2024 Oct;34(4):402-417. doi: 10.1016/j.semradonc.2024.07.005.
2
Potential Clinical Impact of LAFOV PET/CT: A Systematic Evaluation of Image Quality and Lesion Detection.
Diagnostics (Basel). 2023 Oct 24;13(21):3295. doi: 10.3390/diagnostics13213295.
5
NEMA NU 2-2018 performance evaluation of a new generation 30-cm axial field-of-view Discovery MI PET/CT.
Eur J Nucl Med Mol Imaging. 2022 Jul;49(9):3023-3032. doi: 10.1007/s00259-022-05751-7. Epub 2022 Mar 14.
7
Feasibility of Acquisitions Using Total-Body PET/CT with an Ultra-Low F-FDG Activity.
J Nucl Med. 2022 Jun;63(6):959-965. doi: 10.2967/jnumed.121.262038. Epub 2021 Sep 30.
8
Quantitative accuracy in total-body imaging using the uEXPLORER PET/CT scanner.
Phys Med Biol. 2021 Oct 11;66(20). doi: 10.1088/1361-6560/ac287c.
9
Advanced Monte Carlo simulations of emission tomography imaging systems with GATE.
Phys Med Biol. 2021 May 14;66(10). doi: 10.1088/1361-6560/abf276.
10
Quantitative PET in the 2020s: a roadmap.
Phys Med Biol. 2021 Mar 12;66(6):06RM01. doi: 10.1088/1361-6560/abd4f7.

本文引用的文献

2
Effective count rates for PET scanners with reduced and extended axial field of view.
Phys Med Biol. 2011 Jun 21;56(12):3629-43. doi: 10.1088/0031-9155/56/12/011. Epub 2011 May 25.
3
Physical and clinical performance of the mCT time-of-flight PET/CT scanner.
Phys Med Biol. 2011 Apr 21;56(8):2375-89. doi: 10.1088/0031-9155/56/8/004. Epub 2011 Mar 22.
4
Improvement in lesion detection with whole-body oncologic time-of-flight PET.
J Nucl Med. 2011 Mar;52(3):347-53. doi: 10.2967/jnumed.110.080382. Epub 2011 Feb 14.
5
OpenPET: A Flexible Electronics System for Radiotracer Imaging.
IEEE Trans Nucl Sci. 2009 Oct 24;2009:3491-3495. doi: 10.1109/NSSMIC.2009.5401797.
6
State of the art and challenges of time-of-flight PET.
Phys Med. 2009 Mar;25(1):1-11. doi: 10.1016/j.ejmp.2008.10.001. Epub 2008 Dec 19.
7
Image-derived input functions for PET brain studies.
Eur J Nucl Med Mol Imaging. 2009 Mar;36(3):463-71. doi: 10.1007/s00259-008-0986-8. Epub 2008 Nov 22.
8
Measured count-rate performance of the Discovery STE PET/CT scanner in 2D, 3D and partial collimation acquisition modes.
Phys Med Biol. 2008 Jul 21;53(14):3723-38. doi: 10.1088/0031-9155/53/14/002. Epub 2008 Jun 23.
9
Benefit of time-of-flight in PET: experimental and clinical results.
J Nucl Med. 2008 Mar;49(3):462-70. doi: 10.2967/jnumed.107.044834. Epub 2008 Feb 20.
10
Comparison of imaging techniques for tracking cardiac stem cell therapy.
J Nucl Med. 2007 Dec;48(12):1916-9. doi: 10.2967/jnumed.107.043299.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验