Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
Phys Med Biol. 2012 Jul 7;57(13):4077-94. doi: 10.1088/0031-9155/57/13/4077. Epub 2012 Jun 7.
The axial field of view (AFOV) of the current generation of clinical whole-body PET scanners range from 15-22 cm, which limits sensitivity and renders applications such as whole-body dynamic imaging or imaging of very low activities in whole-body cellular tracking studies, almost impossible. Generally, extending the AFOV significantly increases the sensitivity and count-rate performance. However, extending the AFOV while maintaining detector thickness has significant cost implications. In addition, random coincidences, detector dead time, and object attenuation may reduce scanner performance as the AFOV increases. In this paper, we use Monte Carlo simulations to find the optimal scanner geometry (i.e. AFOV, detector thickness and acceptance angle) based on count-rate performance for a range of scintillator volumes ranging from 10 to 93 l with detector thickness varying from 5 to 20 mm. We compare the results to the performance of a scanner based on the current Siemens Biograph mCT geometry and electronics. Our simulation models were developed based on individual components of the Siemens Biograph mCT and were validated against experimental data using the NEMA NU-2 2007 count-rate protocol. In the study, noise-equivalent count rate (NECR) was computed as a function of maximum ring difference (i.e. acceptance angle) and activity concentration using a 27 cm diameter, 200 cm uniformly filled cylindrical phantom for each scanner configuration. To reduce the effect of random coincidences, we implemented a variable coincidence time window based on the length of the lines of response, which increased NECR performance up to 10% compared to using a static coincidence time window for scanners with a large maximum ring difference values. For a given scintillator volume, the optimal configuration results in modest count-rate performance gains of up to 16% compared to the shortest AFOV scanner with the thickest detectors. However, the longest AFOV of approximately 2 m with 20 mm thick detectors resulted in performance gains of 25-31 times higher NECR relative to the current Siemens Biograph mCT scanner configuration.
当前临床全身 PET 扫描仪的轴向视野(AFOV)范围为 15-22cm,这限制了灵敏度,使得全身动态成像或全身细胞跟踪研究中极低活性的成像等应用几乎不可能实现。通常,扩大 AFOV 会显著提高灵敏度和计数率性能。然而,在保持探测器厚度的情况下扩大 AFOV 会带来显著的成本影响。此外,随着 AFOV 的增加,随机符合事件、探测器死时间和物体衰减可能会降低扫描仪的性能。在本文中,我们使用蒙特卡罗模拟来根据计数率性能找到最佳的扫描仪几何形状(即 AFOV、探测器厚度和接收角),适用于范围从 10 到 93 升的各种闪烁体体积,探测器厚度从 5 到 20 毫米不等。我们将结果与基于当前西门子 Biograph mCT 几何形状和电子设备的扫描仪的性能进行了比较。我们的模拟模型是基于西门子 Biograph mCT 的各个组件开发的,并使用 NEMA NU-2 2007 计数率协议通过实验数据进行了验证。在研究中,使用直径为 27cm、长度为 200cm 的均匀填充圆柱形体模,针对每种扫描仪配置,通过最大环差(即接收角)和活动浓度计算了噪声等效计数率(NECR)。为了减少随机符合事件的影响,我们根据响应线的长度实现了可变的符合时间窗口,与使用最大环差值较大的静态符合时间窗口相比,这提高了 NECR 性能达 10%。对于给定的闪烁体体积,与最厚探测器的最短 AFOV 扫描仪相比,最佳配置可使计数率性能提高高达 16%。然而,最长的 AFOV 约为 2m,使用 20mm 厚的探测器,相对于当前的西门子 Biograph mCT 扫描仪配置,NECR 的性能增益高达 25-31 倍。