Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
J Phys Chem B. 2012 Jun 28;116(25):7436-48. doi: 10.1021/jp304300n. Epub 2012 Jun 14.
Precision NMR measurements of deuterium isotope effects on the chemical shifts of backbone nuclei in proteins ((15)N, (13)CO, (13)C(α), and (1)HN) arising from (1)H-to-(2)H substitutions at aliphatic carbon sites. Isolation of molecular species with a defined protonation/deuteration pattern at carbon-α/β positions allows distinguishing and accurately quantifying different isotope effects within the protein backbone. The isotope shifts measured in the partially deuterated protein ubiquitin are interpreted in terms of backbone geometry via empirical relationships describing the dependence of isotope shifts on (φ; ψ) backbone dihedral angles. Because of their relatively large magnitude and clear dependence on the protein secondary structure, the two- and three-bond backbone amide (15)N isotope shifts, (2)ΔN(C(α,i)D) and (3)ΔN(C(α,i-1)D), can find utility for NMR structural refinement of small-to-medium size proteins.
通过在脂肪碳位点的氢到氘取代,对蛋白质中(15)N、(13)CO、(13)C(α)和(1)HN 核的化学位移的氘同位素效应进行精确 NMR 测量。在碳-α/β位置上具有定义的质子化/氘化模式的分子物种的分离允许在蛋白质骨架内区分和准确量化不同的同位素效应。通过描述同位素位移对(φ;ψ)骨架二面角依赖性的经验关系,从骨架几何形状解释在部分氘化的泛素中测量的同位素位移。由于它们的幅度相对较大,并且与蛋白质二级结构明显相关,因此两个和三个键的酰胺(15)N 同位素位移(2)ΔN(C(α,i)D)和(3)ΔN(C(α,i-1)D)可用于 NMR 结构精修中小到中等大小的蛋白质。