Chavez-Santoscoy Ana V, Huntimer Lucas M, Ramer-Tait Amanda E, Wannemuehler Michael, Narasimhan Balaji
Department of Chemical and Biological Engineering, Iowa State University, USA.
J Vis Exp. 2012 Jun 8(64):e3883. doi: 10.3791/3883.
Biodegradable nanoparticles have emerged as a versatile platform for the design and implementation of new intranasal vaccines against respiratory infectious diseases. Specifically, polyanhydride nanoparticles composed of the aliphatic sebacic acid (SA), the aromatic 1,6-bis(p-carboxyphenoxy)hexane (CPH), or the amphiphilic 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) display unique bulk and surface erosion kinetics and can be exploited to slowly release functional biomolecules (e.g., protein antigens, immunoglobulins, etc.) in vivo. These nanoparticles also possess intrinsic adjuvant activity, making them an excellent choice for a vaccine delivery platform. In order to elucidate the mechanisms governing the activation of innate immunity following intranasal mucosal vaccination, one must evaluate the molecular and cellular responses of the antigen presenting cells (APCs) responsible for initiating immune responses. Dendritic cells are the principal APCs found in conducting airways, while alveolar macrophages (AMɸ) predominate in the lung parenchyma. AMɸ are highly efficient in clearing the lungs of microbial pathogens and cell debris. In addition, this cell type plays a valuable role in the transport of microbial antigens to the draining lymph nodes, which is an important first step in the initiation of an adaptive immune response. AMɸ also express elevated levels of innate pattern recognition and scavenger receptors, secrete pro-inflammatory mediators, and prime naïve T cells. A relatively pure population of AMɸ (e.g., greater than 80%) can easily be obtained via lung lavage for study in the laboratory. Resident AMɸ harvested from immune competent animals provide a representative phenotype of the macrophages that will encounter the particle-based vaccine in vivo. Herein, we describe the protocols used to harvest and culture AMɸ from mice and examine the activation phenotype of the macrophages following treatment with polyanhydride nanoparticles in vitro.
可生物降解的纳米颗粒已成为设计和实施针对呼吸道传染病的新型鼻内疫苗的通用平台。具体而言,由脂肪族癸二酸(SA)、芳香族1,6-双(对羧基苯氧基)己烷(CPH)或两亲性1,8-双(对羧基苯氧基)-3,6-二氧杂辛烷(CPTEG)组成的聚酸酐纳米颗粒具有独特的整体和表面侵蚀动力学,可用于在体内缓慢释放功能性生物分子(如蛋白质抗原、免疫球蛋白等)。这些纳米颗粒还具有内在的佐剂活性,使其成为疫苗递送平台的绝佳选择。为了阐明鼻内黏膜疫苗接种后先天免疫激活的调控机制,必须评估负责启动免疫反应的抗原呈递细胞(APC)的分子和细胞反应。树突状细胞是传导气道中发现的主要APC,而肺泡巨噬细胞(AMɸ)在肺实质中占主导地位。AMɸ在清除肺部微生物病原体和细胞碎片方面效率很高。此外,这种细胞类型在将微生物抗原运输到引流淋巴结中发挥着重要作用,这是启动适应性免疫反应的重要第一步。AMɸ还表达升高水平的先天模式识别和清道夫受体,分泌促炎介质,并激活幼稚T细胞。通过肺灌洗可以轻松获得相对纯净的AMɸ群体(例如,大于80%)用于实验室研究。从免疫活性动物中收获的驻留AMɸ提供了体内将遇到基于颗粒疫苗的巨噬细胞的代表性表型。在此,我们描述了从小鼠中收获和培养AMɸ并在体外用聚酸酐纳米颗粒处理后检查巨噬细胞激活表型的方案。