Suppr超能文献

在硅负载的钽氢化物上,通过连续的异裂 H2 实现 N2 的裂解:DFT 提出的机理。

Successive heterolytic cleavages of H2 achieve N2 splitting on silica-supported tantalum hydrides: a DFT proposed mechanism.

机构信息

Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

出版信息

Inorg Chem. 2012 Jul 2;51(13):7237-49. doi: 10.1021/ic300498b. Epub 2012 Jun 19.

Abstract

DFT(B3PW91) calculations have been carried out to propose a pathway for the N(2) cleavage by H(2) in the presence of silica-supported tantalum hydride complexes [(≡SiO)(2)TaH(x)] that forms [(≡SiO)(2)Ta(NH)(NH(2))] (Science 2007, 317, 1056). The calculations, performed on the cluster models {μ-O(HO)(2)SiO}TaH(1) and {μ-O(HO)(2)SiO}TaH(3), labelled as (≡SiO)(2)TaH(x) (x = 1, 3), show that the direct hydride transfers to coordinated N-based ligands in (≡SiO)(2)TaH(η(2)-N(2)) and (≡SiO)(2)TaH(η(2)-HNNH) have high energy barrier barriers. These high energy barriers are due in part to a lack of energetically accessible empty orbitals in the negatively charged N-based ligands. It is shown that a succession of proton transfers and reduction steps (hydride transfer or 2 electron reduction by way of dihydride reductive coupling) to the nitrogen-based ligands leads to more energetically accessible pathways. These proton transfers, which occur by way of heterolytic activation of H(2), increase the electrophilicity of the resulting ligand (diazenido, N(2)H(-), and hydrazido, NHNH(2)(-), respectively) that can thus accept a hydride with a moderate energy barrier. In the case of (≡SiO)(2)TaH(η(2)-HNNH), the H(2) molecule that is adding across the Ta-N bond is released after the hydride transfer step by heterolytic elimination from (≡SiO)(2)TaH(NH(2))(2), suggesting that dihydrogen has a key role in assisting the final steps of the reaction without itself being consumed in the process. This partly accounts for the experimental observation that the addition of H(2) is needed to convert an intermediate, identified as a diazenido complex [(≡SiO)(2)TaH(η(2)-HNNH)] from its ν(N-H) stretching frequency of 3400 cm(-1), to the final product. Throughout the proposed mechanism, the tantalum remains in its preferred high oxidation state and avoids redox-type reactions, which are more energetically demanding.

摘要

采用 DFT(B3PW91)计算方法,提出了在硅负载的钽氢化物配合物[(≡SiO)(2)TaH(x)]存在的条件下,通过 H(2)裂解 N(2)的途径,该配合物可形成[(≡SiO)(2)Ta(NH)(NH(2))](Science 2007,317,1056)。计算结果表明,在簇模型{μ-O(HO)(2)SiO}TaH(1)和{μ-O(HO)(2)SiO}TaH(3)上进行的计算,即标记为(≡SiO)(2)TaH(x)(x = 1,3)的计算,直接将氢化物转移到(≡SiO)(2)TaH(η(2)-N(2))和(≡SiO)(2)TaH(η(2)-HNNH)中配位的基于 N 的配体具有较高的能量势垒。这些高能量势垒部分是由于带负电荷的基于 N 的配体中缺乏能量上可及的空轨道。结果表明,通过质子转移和还原步骤(通过二氢化物还原偶联进行氢化物转移或 2 电子还原)向基于 N 的配体连续进行,可产生更具能量可及性的途径。这些质子转移通过 H(2)的异裂活化进行,增加了生成配体的亲电性(分别为叠氮化物、N(2)H(-)和肼化物、NHNH(2)(-)),从而可以中等能量势垒接受氢化物。在(≡SiO)(2)TaH(η(2)-HNNH)的情况下,在氢化物转移步骤之后,通过(≡SiO)(2)TaH(NH(2))(2)的异裂消除,添加到 Ta-N 键上的 H(2)分子被释放,这表明氢气在协助反应的最后步骤中起着关键作用,而自身在该过程中并未消耗。这部分解释了实验观察到的现象,即需要添加 H(2)才能将中间体识别为叠氮化物配合物[(≡SiO)(2)TaH(η(2)-HNNH)],从其ν(N-H)伸缩频率 3400 cm(-1)转化为最终产物。在整个提出的机理中,钽保持其首选的高氧化态,并避免了更具能量需求的氧化还原型反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验