Institute of Chemical Kinetics and Combustion, Novosibirsk 630090, Russia.
J Chem Phys. 2012 Jun 14;136(22):224506. doi: 10.1063/1.4725535.
The homogeneous nucleation of bismuth supersaturated vapor is studied in a laminar flow quartz tube nucleation chamber. The concentration, size, and morphology of outcoming aerosol particles are analyzed by a transmission electron microscope (TEM) and an automatic diffusion battery (ADB). The wall deposit morphology is studied by scanning electron microscopy. The rate of wall deposition is measured by the light absorption technique and direct weighting of the wall deposits. The confines of the nucleation region are determined in the "supersaturation cut-off" measurements inserting a metal grid into the nucleation zone and monitoring the outlet aerosol concentration response. Using the above experimental techniques, the nucleation rate, supersaturation, and nucleation temperature are measured. The surface tension of the critical nucleus and the radius of the surface of tension are determined from the measured nucleation parameters. To this aim an analytical formula for the nucleation rate is used, derived from author's previous papers based on the Gibbs formula for the work of formation of critical nucleus and the translation-rotation correction. A more accurate approach is also applied to determine the surface tension of critical drop from the experimentally measured bismuth mass flow, temperature profiles, ADB, and TEM data solving an inverse problem by numerical simulation. The simulation of the vapor to particles conversion is carried out in the framework of the explicit finite difference scheme accounting the nucleation, vapor to particles and vapor to wall deposition, and particle to wall deposition, coagulation. The nucleation rate is determined from simulations to be in the range of 10(9)-10(11) cm(-3) s(-1) for the supersaturation of Bi(2) dimers being 10(17)-10(7) and the nucleation temperature 330-570 K, respectively. The surface tension σ(S) of the bismuth critical nucleus is found to be in the range of 455-487 mN/m for the radius of the surface of tension from 0.36 to 0.48 nm. The function σ(S) changes weakly with the radius of critical nucleus. The value of σ(S) is from 14% to 24% higher than the surface tension of a flat surface.
在层流石英管成核室中研究了过饱和铋蒸汽的均匀成核。通过透射电子显微镜(TEM)和自动扩散电池(ADB)分析了出射气溶胶颗粒的浓度、大小和形态。通过扫描电子显微镜研究了壁沉积物形态。通过光吸收技术和壁沉积物的直接称重测量壁沉积速率。通过在成核区插入金属网格并监测出口气溶胶浓度响应来确定成核区的范围。使用上述实验技术测量了成核速率、过饱和度和成核温度。从测量的成核参数确定了临界核的表面张力和表面张力半径。为此,使用了一个基于作者以前的论文的分析公式,该公式基于吉布斯公式推导而成,用于计算临界核形成功和翻译-旋转修正的成核速率。还应用了一种更准确的方法,通过数值模拟求解逆问题,从实验测量的铋质量流量、温度分布、ADB 和 TEM 数据中确定临界液滴的表面张力。在显式有限差分方案的框架内进行了从蒸汽到颗粒的转化模拟,该方案考虑了成核、蒸汽到颗粒和蒸汽到壁沉积以及颗粒到壁沉积、凝聚。通过模拟确定成核速率在 10^9-10^11 cm^(-3) s^(-1)范围内,对于 Bi(2)二聚体的过饱和度为 10^17-10^7,成核温度分别为 330-570 K。发现铋临界核的表面张力σ(S)在 455-487 mN/m 范围内,表面张力半径从 0.36 到 0.48 nm。σ(S)函数随临界核半径的变化很小。σ(S)的值比平面表面的表面张力高 14%-24%。