Buil Stéphanie, Laverdant Julien, Berini Bruno, Maso Pierre, Hermier Jean-Pierre, Quélin Xavier
Groupe d’Etudes de la Matière Condensée, Université de Versailles Saint-Quentin, CNRS UMR 8635, 45 avenue des Etats-Unis, F-78035 Versailles cedex, France.
Opt Express. 2012 May 21;20(11):11968-75. doi: 10.1364/OE.20.011968.
A parallelized 3D FDTD (Finite-Difference Time-Domain) solver has been used to study the near-field electromagnetic intensity upon plasmonics nanostructures. The studied structures are obtained from AFM (Atomic Force Microscopy) topography measured on real disordered gold layers deposited by thermal evaporation under ultra-high vacuum. The simulation results obtained with these 3D metallic nanostructures are in good agreement with previous experimental results: the localization of the electromagnetic intensity in subwavelength areas ("hot spots") is demonstrated; the spectral and polarization dependences of the position of these "hot spots" are also satisfactory; the enhancement factors obtained are realistic compared to the experimental ones. These results could be useful to further our understanding of the electromagnetic behavior of random metal layers.
一种并行化的三维时域有限差分(FDTD)求解器已被用于研究等离子体纳米结构上的近场电磁强度。所研究的结构是通过在超高真空下热蒸发沉积的真实无序金层上测量的原子力显微镜(AFM)形貌获得的。用这些三维金属纳米结构获得的模拟结果与先前的实验结果吻合良好:证明了电磁强度在亚波长区域(“热点”)的局域化;这些“热点”位置的光谱和偏振依赖性也令人满意;与实验结果相比,所获得的增强因子是现实的。这些结果可能有助于增进我们对随机金属层电磁行为的理解。