Department of Radiology, New York University School of Medicine, New York, 660 First Avenue, 4th Floor, New York, New York 10016, USA.
NMR Biomed. 2012 Dec;25(12):1392-400. doi: 10.1002/nbm.2812. Epub 2012 Jun 20.
Since the brain's gray matter (GM) and white matter (WM) metabolite concentrations differ, their partial volumes can vary the voxel's ¹H MR spectroscopy (¹H-MRS) signal, reducing sensitivity to changes. While single-voxel ¹H-MRS cannot differentiate between WM and GM signals, partial volume correction is feasible by MR spectroscopic imaging (MRSI) using segmentation of the MRI acquired for VOI placement. To determine the magnitude of this effect on metabolic quantification, we segmented a 1-mm³ resolution MRI into GM, WM and CSF masks that were co-registered with the MRSI grid to yield their partial volumes in approximately every 1 cm³ spectroscopic voxel. Each voxel then provided one equation with two unknowns: its i- metabolite's GM and WM concentrations C(i) (GM) , C(i) (WM) . With the voxels' GM and WM volumes as independent coefficients, the over-determined system of equations was solved for the global averaged C(i) (GM) and C(i) (WM) . Trading off local concentration differences offers three advantages: (i) higher sensitivity due to combined data from many voxels; (ii) improved specificity to WM versus GM changes; and (iii) reduced susceptibility to partial volume effects. These improvements made no additional demands on the protocol, measurement time or hardware. Applying this approach to 18 volunteered 3D MRSI sets of 480 voxels each yielded N-acetylaspartate, creatine, choline and myo-inositol C(i) (GM) concentrations of 8.5 ± 0.7, 6.9 ± 0.6, 1.2 ± 0.2, 5.3 ± 0.6 mM, respectively, and C(i) (WM) concentrations of 7.7 ± 0.6, 4.9 ± 0.5, 1.4 ± 0.1 and 4.4 ± 0.6mM, respectively. We showed that unaccounted voxel WM or GM partial volume can vary absolute quantification by 5-10% (more for ratios), which can often double the sample size required to establish statistical significance.
由于大脑的灰质 (GM) 和白质 (WM) 代谢物浓度不同,它们的部分体积可以改变体素的 ¹H 磁共振波谱 (¹H-MRS) 信号,降低对变化的敏感性。虽然单体素 ¹H-MRS 不能区分 WM 和 GM 信号,但通过对用于 VOI 放置的 MRI 进行分割的磁共振波谱成像 (MRSI) 进行部分体积校正,是可行的。为了确定这种效应对代谢物定量的影响程度,我们将分辨率为 1mm³的 MRI 分割为 GM、WM 和 CSF 掩模,并与 MRSI 网格配准,以获得每个约 1cm³光谱体素的部分体积。每个体素都提供了一个包含两个未知数的方程:其 i-代谢物的 GM 和 WM 浓度 C(i)(GM)、C(i)(WM)。由于体素的 GM 和 WM 体积作为独立系数,因此通过求解过定方程组来获得全局平均 C(i)(GM)和 C(i)(WM)。通过交换局部浓度差异,该方法具有三个优势:(i) 由于来自许多体素的数据结合,因此具有更高的灵敏度;(ii) 对 WM 与 GM 变化具有更高的特异性;(iii) 降低了对部分体积效应的敏感性。这些改进对协议、测量时间或硬件没有额外的要求。将这种方法应用于 18 个志愿者的 3D MRSI 数据集,每个数据集包含 480 个体素,分别得到 N-乙酰天冬氨酸、肌酸、胆碱和肌醇的 C(i)(GM)浓度分别为 8.5±0.7、6.9±0.6、1.2±0.2、5.3±0.6mM,C(i)(WM)浓度分别为 7.7±0.6、4.9±0.5、1.4±0.1 和 4.4±0.6mM。我们表明,未考虑的体素 WM 或 GM 部分体积会使绝对定量变化 5-10%(对于比值而言变化更大),这通常会使建立统计学显著性所需的样本量增加一倍。