Suppr超能文献

染色质重塑因子的全基因组核小体特异性和方向性。

Genome-wide nucleosome specificity and directionality of chromatin remodelers.

机构信息

Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Cell. 2012 Jun 22;149(7):1461-73. doi: 10.1016/j.cell.2012.04.036.

Abstract

How chromatin remodelers cooperate to organize nucleosomes around the start and end of genes is not known. We determined the genome-wide binding of remodeler complexes SWI/SNF, RSC, ISW1a, ISW1b, ISW2, and INO80 to individual nucleosomes in Saccharomyces, and determined their functional contributions to nucleosome positioning through deletion analysis. We applied ultra-high-resolution ChIP-exo mapping to Isw2 to determine its subnucleosomal orientation and organization on a genomic scale. Remodelers interacted with selected nucleosome positions relative to the start and end of genes and produced net directionality in moving nucleosomes either away or toward nucleosome-free regions at the 5' and 3' ends of genes. Isw2 possessed a subnucleosomal organization in accord with biochemical and crystallographic-based models that place its linker binding region within promoters and abutted against Reb1-bound locations. Together, these findings reveal a coordinated position-specific approach taken by remodelers to organize genic nucleosomes into arrays.

摘要

染色质重塑复合物如何合作,将核小体组织在基因的起始和结束处尚不清楚。我们确定了重塑复合物 SWI/SNF、RSC、ISW1a、ISW1b、ISW2 和 INO80 在单个核小体上的全基因组结合,通过缺失分析确定了它们对核小体定位的功能贡献。我们应用超高分辨率 ChIP-exo 作图来确定 Isw2 的亚核小体取向和在基因组范围内的组织。重塑复合物与基因起始和结束处的选定核小体位置相互作用,并在基因 5' 和 3' 端的无核小体区域产生将核小体移出或移向的净方向性。Isw2 具有亚核小体组织,与基于生化和晶体学的模型一致,该模型将其连接子结合区域置于启动子内,并与 Reb1 结合的位置相邻。总之,这些发现揭示了重塑复合物以协调的位置特异性方法将基因核小体组织成阵列。

相似文献

1
Genome-wide nucleosome specificity and directionality of chromatin remodelers.
Cell. 2012 Jun 22;149(7):1461-73. doi: 10.1016/j.cell.2012.04.036.
3
Genomic Nucleosome Organization Reconstituted with Pure Proteins.
Cell. 2016 Oct 20;167(3):709-721.e12. doi: 10.1016/j.cell.2016.09.045.
4
The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor.
Mol Cell Biol. 2011 Feb;31(4):662-73. doi: 10.1128/MCB.01035-10. Epub 2010 Dec 6.
5
Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler.
Genome Res. 2016 May;26(5):693-704. doi: 10.1101/gr.199919.115. Epub 2016 Mar 18.
6
Basis of specificity for a conserved and promiscuous chromatin remodeling protein.
Elife. 2021 Feb 12;10:e64061. doi: 10.7554/eLife.64061.
7
8
Comparison of the Isw1a, Isw1b, and Isw2 nucleosome disrupting activities.
Biochemistry. 2013 Oct 8;52(40):6940-9. doi: 10.1021/bi400634r. Epub 2013 Sep 27.
9
ISWI and CHD chromatin remodelers bind promoters but act in gene bodies.
PLoS Genet. 2013;9(2):e1003317. doi: 10.1371/journal.pgen.1003317. Epub 2013 Feb 28.
10
The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes.
EMBO J. 2011 Apr 6;30(7):1277-88. doi: 10.1038/emboj.2011.43. Epub 2011 Feb 22.

引用本文的文献

1
Regulation of DNA translocation of chromatin remodeler enzyme Chd1 by exit DNA unwrapping.
Life Metab. 2025 Apr 9;4(3):loaf013. doi: 10.1093/lifemeta/loaf013. eCollection 2025 Jun.
3
Fungal chromatin remodeler Isw1 modulates translation via regulating tRNA transcription.
Nucleic Acids Res. 2025 Mar 20;53(6). doi: 10.1093/nar/gkaf225.
4
Plasmodium blood stage development requires the chromatin remodeller Snf2L.
Nature. 2025 Mar;639(8056):1069-1075. doi: 10.1038/s41586-025-08595-x. Epub 2025 Feb 19.
5
Autoimmune disease: a view of epigenetics and therapeutic targeting.
Front Immunol. 2024 Nov 13;15:1482728. doi: 10.3389/fimmu.2024.1482728. eCollection 2024.
6
ATP-dependent remodeling of chromatin condensates uncovers distinct mesoscale effects of two remodelers.
bioRxiv. 2024 Sep 10:2024.09.10.611504. doi: 10.1101/2024.09.10.611504.
8
Swi/Snf chromatin remodeling regulates transcriptional interference and gene repression.
Mol Cell. 2024 Aug 22;84(16):3080-3097.e9. doi: 10.1016/j.molcel.2024.06.029. Epub 2024 Jul 22.
10
Enhancer switching in cell lineage priming is linked to eRNA, Brg1's AT-hook, and SWI/SNF recruitment.
Mol Cell. 2024 May 16;84(10):1855-1869.e5. doi: 10.1016/j.molcel.2024.03.013. Epub 2024 Apr 8.

本文引用的文献

1
Genome-wide structure and organization of eukaryotic pre-initiation complexes.
Nature. 2012 Jan 18;483(7389):295-301. doi: 10.1038/nature10799.
2
Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution.
Cell. 2011 Dec 9;147(6):1408-19. doi: 10.1016/j.cell.2011.11.013.
3
Genome-wide function of H2B ubiquitylation in promoter and genic regions.
Genes Dev. 2011 Nov 1;25(21):2254-65. doi: 10.1101/gad.177238.111.
4
Extranucleosomal DNA binding directs nucleosome sliding by Chd1.
Mol Cell Biol. 2011 Dec;31(23):4746-59. doi: 10.1128/MCB.05735-11. Epub 2011 Oct 3.
5
A role for Snf2-related nucleosome-spacing enzymes in genome-wide nucleosome organization.
Science. 2011 Sep 23;333(6050):1758-60. doi: 10.1126/science.1206097.
6
Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output.
PLoS Biol. 2011 Jun;9(6):e1001086. doi: 10.1371/journal.pbio.1001086. Epub 2011 Jun 28.
7
Diversity of operation in ATP-dependent chromatin remodelers.
Biochim Biophys Acta. 2011 Sep;1809(9):476-87. doi: 10.1016/j.bbagrm.2011.05.007. Epub 2011 May 15.
8
A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome.
Science. 2011 May 20;332(6032):977-80. doi: 10.1126/science.1200508.
9
Structure and mechanism of the chromatin remodelling factor ISW1a.
Nature. 2011 Apr 28;472(7344):448-53. doi: 10.1038/nature09947.
10
Stable and dynamic nucleosome states during a meiotic developmental process.
Genome Res. 2011 Jun;21(6):875-84. doi: 10.1101/gr.117465.110. Epub 2011 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验