Suppr超能文献

两种典型性:重新思考统计典型性在日常因果归因中的作用。

Two types of typicality: rethinking the role of statistical typicality in ordinary causal attributions.

作者信息

Sytsma Justin, Livengood Jonathan, Rose David

机构信息

Department of Philosophy and Humanities, East Tennessee State University, PO Box 70656, Johnson City, TN 37690, United States.

出版信息

Stud Hist Philos Biol Biomed Sci. 2012 Dec;43(4):814-20. doi: 10.1016/j.shpsc.2012.05.009. Epub 2012 Jun 20.

Abstract

Recent work on the role of norms in the use of causal language by ordinary people has led to a consensus among several researchers: The consensus position is that causal attributions are sensitive to both statistical norms and prescriptive norms. But what is a statistical norm? We argue that there are at least two types that should be distinguished--agent-level statistical norms and population-level statistical norms. We then suggest an alternative account of ordinary causal attributions about agents (the responsibility view), noting that this view motivates divergent predictions about the effect of information about each of the two types of statistical norms noted. Further, these predictions run counter to those made by the consensus position. With this set-up in place, we present the results of a series of new experimental studies testing our predictions. The results are in line with the responsibility view, while indicating that the consensus position is seriously mistaken.

摘要

近期关于规范在普通人因果语言使用中所起作用的研究,使得几位研究者达成了共识:共识观点认为,因果归因对统计规范和规定性规范都很敏感。但什么是统计规范呢?我们认为至少有两种类型需要区分——个体层面的统计规范和总体层面的统计规范。然后我们提出了一种关于对个体的日常因果归因的替代性解释(责任观点),并指出这种观点对关于上述两种统计规范信息的影响会产生不同的预测。此外,这些预测与共识观点所做出的预测背道而驰。在这种情况下,我们展示了一系列新的实验研究结果,这些研究检验了我们的预测。结果与责任观点一致,同时表明共识观点存在严重错误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验