Suppr超能文献

通过化学浴沉积法合成的 Zn(x)Cd(1-xS) 薄膜的结构与组成。

Structure and composition of Zn(x)Cd(1-xS) films synthesized through chemical bath deposition.

机构信息

Department of Chemical Engineering and Materials Science, University of Minnesota , 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States.

出版信息

ACS Appl Mater Interfaces. 2012 Jul 25;4(7):3676-84. doi: 10.1021/am300771k. Epub 2012 Jul 10.

Abstract

Zinc cadmium sulfide (ZnxCd1-xS) thin films grown through chemical bath deposition are used in chalcopyrite solar cells as the buffer layer between the n-type zinc oxide and the p-type light absorbing chalcopyrite film. To optimize energetic band alignment and optical absorption, advanced solar cell architectures require the ability to manipulate x as a function of distance from the absorber-ZnCdS interface. Herein, we investigate the fundamental factors that govern the evolution of the composition as a function of depth in the film. By changing the initial concentrations of Zn and Cd salts in the bath, the entire range of overall compositions ranging from primarily cubic ZnS to primarily hexagonal CdS could be deposited. However, films are inhomogeneous and x varies significantly as function of distance from the film-substrate interface. Films with high overall Zn concentration (x > 0.5) exhibit a Cd-rich layer near the film-substrate interface because Cd is more reactive than Zn. This layer is typically beneath a nearly pure ZnS film that forms after the Cd-rich layers are deposited and Cd is depleted in the bath. In films with high overall Cd concentration (x < 0.5) the Zn concentration rises towards the film's surface. Fortunately, these gradients are favorable for solar cells based on low band gap chalcopyrite films.

摘要

通过化学浴沉积生长的锌镉硫化物(ZnxCd1-xS)薄膜可用作黄铜矿太阳能电池中 n 型氧化锌和 p 型光吸收黄铜矿薄膜之间的缓冲层。为了优化能量带隙对准和光吸收,先进的太阳能电池结构需要能够根据距离吸收体-ZnCdS 界面的位置来操纵 x。在此,我们研究了控制薄膜中深度相关组成演变的基本因素。通过改变浴中 Zn 和 Cd 盐的初始浓度,可以沉积从主要立方 ZnS 到主要六方 CdS 的整个整体组成范围。然而,薄膜是不均匀的,并且 x 随距离薄膜-衬底界面的变化而显著变化。具有高总体 Zn 浓度(x > 0.5)的薄膜在薄膜-衬底界面附近表现出富 Cd 层,因为 Cd 比 Zn 更具反应性。该层通常在沉积富 Cd 层之后形成的几乎纯 ZnS 薄膜下方,并且浴中 Cd 耗尽。在具有高总体 Cd 浓度(x < 0.5)的薄膜中,Zn 浓度向薄膜表面上升。幸运的是,这些梯度有利于基于低带隙黄铜矿薄膜的太阳能电池。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验