Suppr超能文献

用于活动胎儿监测的低复杂度 R 波检测。

Low-complexity R-peak detection for ambulatory fetal monitoring.

机构信息

Faculty of Electrical Engineering, University of Technology Eindhoven, 5612 AZ, Eindhoven, The Netherlands.

出版信息

Physiol Meas. 2012 Jul;33(7):1135-50. doi: 10.1088/0967-3334/33/7/1135. Epub 2012 Jun 27.

Abstract

Non-invasive fetal health monitoring during pregnancy is becoming increasingly important because of the increasing number of high-risk pregnancies. Despite recent advances in signal-processing technology, which have enabled fetal monitoring during pregnancy using abdominal electrocardiogram (ECG) recordings, ubiquitous fetal health monitoring is still unfeasible due to the computational complexity of noise-robust solutions. In this paper, an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, without reducing the R-peak detection performance compared to the existing R-peak detection schemes. Validation of the algorithm is performed on three manually annotated datasets. With a detection error rate of 0.23%, 1.32% and 9.42% on the MIT/BIH Arrhythmia and in-house maternal and fetal databases, respectively, the detection rate of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.

摘要

由于高危妊娠的数量不断增加,妊娠期间的非侵入性胎儿健康监测变得越来越重要。尽管最近信号处理技术取得了进展,使得可以使用腹部心电图(ECG)记录进行妊娠期间的胎儿监测,但由于噪声鲁棒解决方案的计算复杂性,普遍的胎儿健康监测仍然不可行。本文提出了一种用于动态 R 波检测的 ECG R 波检测算法,作为胎儿 ECG 检测算法的一部分。该算法经过优化,可降低计算复杂度,同时与现有的 R 波检测方案相比,不会降低 R 波检测性能。该算法在三个手动标注数据集上进行了验证。在 MIT/BIH 心律失常和内部母体和胎儿数据库上的检测错误率分别为 0.23%、1.32%和 9.42%,与降低的计算复杂度相比,该算法的检测率可与最佳的现有算法相媲美。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验