Suppr超能文献

动态水凝胶的宏观体积变化由 DNA 杂交的可逆性引起。

Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization.

机构信息

Department of Chemistry, Center for Research at Bio/nano Interface, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, USA.

出版信息

J Am Chem Soc. 2012 Jul 25;134(29):12302-7. doi: 10.1021/ja305109n. Epub 2012 Jul 9.

Abstract

Molecular recognition is fundamental to the specific interactions between molecules, of which the best known examples are antibody-antigen binding and cDNA hybridization. Reversible manipulation of the molecular recognition events is still a very challenging topic, and such studies are often performed at the molecular level. An important consideration is the collection of changes at the molecular level to provide macroscopic observables. This research makes use of photoresponsive molecular recognition for the fabrication of novel photoregulated dynamic materials. Specifically, a dynamic hydrogel was prepared by grafting azobenzene-tethered ssDNA and its cDNA to the hydrogel network. The macroscopic volume of the hydrogel can be manipulated through the photoreversible DNA hybridization controlled by alternate irradiation of UV and visible light. The effects of synthetic parameters including the concentration of DNA, polymer monomer, and permanent cross-linker are also discussed.

摘要

分子识别是分子间特异性相互作用的基础,其中最为人熟知的例子是抗体-抗原结合和 cDNA 杂交。可逆地操纵分子识别事件仍然是一个极具挑战性的课题,而此类研究通常在分子水平上进行。一个重要的考虑因素是收集分子水平上的变化,以提供宏观可观察的结果。本研究利用光响应分子识别来制备新型的光调控动态材料。具体来说,通过将偶氮苯键合的 ssDNA 及其 cDNA 接枝到水凝胶网络上,制备了动态水凝胶。通过交替照射紫外光和可见光来控制光致可逆 DNA 杂交,可以操纵水凝胶的宏观体积。还讨论了包括 DNA 浓度、聚合物单体和永久交联剂等合成参数的影响。

相似文献

1
Macroscopic volume change of dynamic hydrogels induced by reversible DNA hybridization.
J Am Chem Soc. 2012 Jul 25;134(29):12302-7. doi: 10.1021/ja305109n. Epub 2012 Jul 9.
3
Reversible control of DNA hybridization by photoresponsive ligands.
Nucleic Acids Symp Ser (Oxf). 2007(51):173-4. doi: 10.1093/nass/nrm087.
4
Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy.
Langmuir. 2011 Jan 4;27(1):399-408. doi: 10.1021/la1037553. Epub 2010 Dec 3.
6
Photocontrolled micellar aggregation of amphiphilic DNA-azobenzene conjugates.
Colloids Surf B Biointerfaces. 2015 Nov 1;135:126-132. doi: 10.1016/j.colsurfb.2015.07.010. Epub 2015 Jul 15.
7
Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels.
Biomacromolecules. 2015 Mar 9;16(3):798-806. doi: 10.1021/bm501710e. Epub 2015 Feb 10.
8
Photoswitchable gel assembly based on molecular recognition.
Nat Commun. 2012 Jan 3;3:603. doi: 10.1038/ncomms1617.
9
Supramolecular polymeric materials via cyclodextrin-guest interactions.
Acc Chem Res. 2014 Jul 15;47(7):2128-40. doi: 10.1021/ar500109h. Epub 2014 Jun 9.
10
Multiresponsive hydrogels based on xylan-type hemicelluloses and photoisomerized azobenzene copolymer as drug delivery carrier.
J Agric Food Chem. 2014 Oct 15;62(41):10000-7. doi: 10.1021/jf504040s. Epub 2014 Oct 3.

引用本文的文献

1
Physical stimuli-responsive DNA hydrogels: design, fabrication strategies, and biomedical applications.
J Nanobiotechnology. 2025 Mar 22;23(1):233. doi: 10.1186/s12951-025-03237-w.
2
Smart nanogels for cancer treatment from the perspective of functional groups.
Front Bioeng Biotechnol. 2024 Jan 10;11:1329311. doi: 10.3389/fbioe.2023.1329311. eCollection 2023.
4
Real-time and label-free biosensing using moiré pattern generated by bioresponsive hydrogel.
Bioact Mater. 2022 Nov 29;23:383-393. doi: 10.1016/j.bioactmat.2022.11.010. eCollection 2023 May.
5
Stimuli-responsive DNA-based hydrogels for biosensing applications.
J Nanobiotechnology. 2022 Jan 21;20(1):40. doi: 10.1186/s12951-022-01242-x.
8
Smart and Functionalized Development of Nucleic Acid-Based Hydrogels: Assembly Strategies, Recent Advances, and Challenges.
Adv Sci (Weinh). 2021 May 7;8(14):2100216. doi: 10.1002/advs.202100216. eCollection 2021 Jul.
9
DNA Assembly-Based Stimuli-Responsive Systems.
Adv Sci (Weinh). 2021 May 14;8(13):2100328. doi: 10.1002/advs.202100328. eCollection 2021 Jul.
10
Stimuli-Responsive Hydrogels for Local Post-Surgical Drug Delivery.
Gels. 2020 May 8;6(2):14. doi: 10.3390/gels6020014.

本文引用的文献

1
Photoswitchable gel assembly based on molecular recognition.
Nat Commun. 2012 Jan 3;3:603. doi: 10.1038/ncomms1617.
2
Redox-responsive self-healing materials formed from host-guest polymers.
Nat Commun. 2011 Oct 25;2:511. doi: 10.1038/ncomms1521.
3
Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.
Nano Lett. 2011 Aug 10;11(8):3156-62. doi: 10.1021/nl201357n. Epub 2011 Jul 5.
4
Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9331-6. doi: 10.1073/pnas.1018358108. Epub 2011 May 19.
6
Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy.
Langmuir. 2011 Jan 4;27(1):399-408. doi: 10.1021/la1037553. Epub 2010 Dec 3.
8
Controllable Soluble Protein Concentration Gradients in Hydrogel Networks.
Adv Funct Mater. 2008 Nov 1;18(21):3410-3417. doi: 10.1002/adfm.200800218.
9
A rotational DNA nanomotor driven by an externally controlled electric field.
Small. 2010 Jan;6(1):44-7. doi: 10.1002/smll.200901106.
10
Spatiotemporal control of cell signalling using a light-switchable protein interaction.
Nature. 2009 Oct 15;461(7266):997-1001. doi: 10.1038/nature08446. Epub 2009 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验