Suppr超能文献

体内活体小鼠中荧光标记循环细胞的断层感应和定位。

Tomographic sensing and localization of fluorescently labeled circulating cells in mice in vivo.

机构信息

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA.

出版信息

Phys Med Biol. 2012 Jul 21;57(14):4627-41. doi: 10.1088/0031-9155/57/14/4627. Epub 2012 Jul 2.

Abstract

Sensing and enumeration of specific types of circulating cells in small animals is an important problem in many areas of biomedical research. Microscopy-based fluorescence in vivo flow cytometry methods have been developed previously, but these are typically limited to sampling of very small blood volumes, so that very rare circulating cells may escape detection. Recently, we described the development of a 'diffuse fluorescence flow cytometer' (DFFC) that allows sampling of much larger blood vessels and therefore circulating blood volumes in the hindlimb, forelimb or tail of a mouse. In this work, we extend this concept by developing and validating a method to tomographically localize circulating fluorescently labeled cells in the cross section of a tissue simulating optical flow phantom and mouse limb. This was achieved using two modulated light sources and an array of six fiber-coupled detectors that allowed rapid, high-sensitivity acquisition of full tomographic data sets at 10 Hz. These were reconstructed into two-dimensional cross-sectional images using Monte Carlo models of light propagation and the randomized algebraic reconstruction technique. We were able to obtain continuous images of moving cells in the sample cross section with 0.5 mm accuracy or better. We first demonstrated this concept in limb-mimicking optical flow photons with up to four flow channels, and then in the tails of mice with fluorescently labeled multiple myeloma cells. This approach increases the overall diagnostic utility of our DFFC instrument.

摘要

在许多生物医学研究领域中,检测和计数特定类型的循环细胞是一个重要问题。之前已经开发出基于显微镜的荧光体内流动细胞计数法,但这些方法通常仅限于非常小的血液体积采样,因此非常罕见的循环细胞可能会被遗漏。最近,我们描述了一种“漫射荧光流动细胞计”(DFFC)的开发,该仪器允许对更大的血管进行采样,从而可以对小鼠的后肢、前肢或尾部的循环血液体积进行采样。在这项工作中,我们通过开发和验证一种方法来扩展这一概念,该方法可以对模拟光学流动体模和小鼠肢体横截面中的荧光标记循环细胞进行断层定位。这是通过使用两个调制光源和一个六光纤耦合探测器阵列来实现的,该阵列允许以 10 Hz 的速度快速、高灵敏度地获取完整的断层数据集。这些数据集使用光传播的蒙特卡罗模型和随机代数重建技术被重建为二维横截面图像。我们能够以 0.5 毫米或更好的精度获得样本横截面上移动细胞的连续图像。我们首先在具有多达四个流动通道的模拟肢体的光学流动光子中演示了这一概念,然后在带有荧光标记的多发性骨髓瘤细胞的小鼠尾部进行了演示。这种方法增加了我们的 DFFC 仪器的整体诊断效用。

相似文献

1
Tomographic sensing and localization of fluorescently labeled circulating cells in mice in vivo.
Phys Med Biol. 2012 Jul 21;57(14):4627-41. doi: 10.1088/0031-9155/57/14/4627. Epub 2012 Jul 2.
2
Instrument for fluorescence sensing of circulating cells with diffuse light in mice in vivo.
J Biomed Opt. 2012 Mar;17(3):037001. doi: 10.1117/1.JBO.17.3.037001.
4
Diffuse fluorescence fiber probe for in vivo detection of circulating cells.
J Biomed Opt. 2017 Mar 1;22(3):37004. doi: 10.1117/1.JBO.22.3.037004.
5
A computer vision approach to rare cell in vivo fluorescence flow cytometry.
Cytometry A. 2013 Dec;83(12):1113-23. doi: 10.1002/cyto.a.22397.
6
Validation of a device for fluorescence sensing of rare circulating cells with diffusive light in an optical flow phantom model.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:486-9. doi: 10.1109/IEMBS.2011.6090071.
7
In Vivo Flow Cytometry of Extremely Rare Circulating Cells.
Sci Rep. 2019 Mar 4;9(1):3366. doi: 10.1038/s41598-019-40143-2.
8
Near-infrared diffuse in vivo flow cytometry.
J Biomed Opt. 2022 Sep;27(9). doi: 10.1117/1.JBO.27.9.097002.

引用本文的文献

2
Prospects for Fluorescence Molecular Liquid Biopsy of Circulating Tumor Cells in Humans.
Front Photon. 2022;3. doi: 10.3389/fphot.2022.910035. Epub 2022 May 8.
3
Near-infrared diffuse in vivo flow cytometry.
J Biomed Opt. 2022 Sep;27(9). doi: 10.1117/1.JBO.27.9.097002.
5
Prospects for the Use of Upconverting Nanoparticles as a Contrast Agent for Enumeration of Circulating Cells in vivo.
Int J Nanomedicine. 2020 Mar 11;15:1709-1719. doi: 10.2147/IJN.S243157. eCollection 2020.
6
In Vivo Flow Cytometry of Extremely Rare Circulating Cells.
Sci Rep. 2019 Mar 4;9(1):3366. doi: 10.1038/s41598-019-40143-2.
8
Performance of computer vision in vivo flow cytometry with low fluorescence contrast.
J Biomed Opt. 2015 Mar;20(3):035005. doi: 10.1117/1.JBO.20.3.035005.

本文引用的文献

1
Instrument for fluorescence sensing of circulating cells with diffuse light in mice in vivo.
J Biomed Opt. 2012 Mar;17(3):037001. doi: 10.1117/1.JBO.17.3.037001.
3
Experimental measurement of time-dependent photon scatter for diffuse optical tomography.
J Biomed Opt. 2010 Nov-Dec;15(6):065006. doi: 10.1117/1.3523371.
4
Fiber-optic multiphoton flow cytometry in whole blood and in vivo.
J Biomed Opt. 2010 Jul-Aug;15(4):047004. doi: 10.1117/1.3463481.
7
Development of fluorescent materials for Diffuse Fluorescence Tomography standards and phantoms.
Opt Express. 2007 Jul 9;15(14):8681-94. doi: 10.1364/oe.15.008681.
9
Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche.
Nature. 2009 Jan 1;457(7225):92-6. doi: 10.1038/nature07434. Epub 2008 Dec 3.
10
Tutorial on diffuse light transport.
J Biomed Opt. 2008 Jul-Aug;13(4):041302. doi: 10.1117/1.2967535.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验