Suppr超能文献

变分算法去除静态噪声:在显微镜成像中的应用。

Variational algorithms to remove stationary noise: applications to microscopy imaging.

机构信息

IMT-UMR5219 Laboratory, University of Toulouse, Toulouse 31042, France.

出版信息

IEEE Trans Image Process. 2012 Oct;21(10):4420-30. doi: 10.1109/TIP.2012.2206037. Epub 2012 Jun 26.

Abstract

A framework and an algorithm are presented in order to remove stationary noise from images. This algorithm is called variational stationary noise remover. It can be interpreted both as a restoration method in a Bayesian framework and as a cartoon+texture decomposition method. In numerous denoising applications, the white noise assumption fails. For example, structured patterns such as stripes appear in the images. The model described here addresses these cases. Applications are presented with images acquired using different modalities: scanning electron microscope, FIB-nanotomography, and an emerging fluorescence microscopy technique called selective plane illumination microscopy.

摘要

提出了一种从图像中去除固定噪声的框架和算法。该算法称为变分固定噪声去除器。它既可以解释为贝叶斯框架中的恢复方法,也可以解释为卡通+纹理分解方法。在许多去噪应用中,白噪声假设不成立。例如,条纹等结构化模式会出现在图像中。这里描述的模型解决了这些情况。应用程序使用不同的模式获取的图像:扫描电子显微镜、FIB 纳米断层扫描和一种新兴的荧光显微镜技术,称为选择性平面照明显微镜。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验