Suppr超能文献

帕唑帕尼治疗转移性肾细胞癌患者的预后或预测性血浆细胞因子和血管生成因子: 2 期和 3 期试验的回顾性分析。

Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: a retrospective analysis of phase 2 and phase 3 trials.

机构信息

Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Lancet Oncol. 2012 Aug;13(8):827-37. doi: 10.1016/S1470-2045(12)70241-3. Epub 2012 Jul 2.

Abstract

BACKGROUND

Several targeted drugs are approved for treatment of patients with metastatic renal-cell cancer, but no validated biomarkers are available for prediction of clinical outcome. We aimed to assess the prognostic and predictive associations of pretreatment plasma concentrations of cytokine and angiogenic factors (CAFs) with data from a phase 2 and a phase 3 trial of pazopanib treatment.

METHODS

We used a three-step approach for screening, confirmation, and validation of prospective CAF biomarkers. We screened 17 CAFs in 129 patients who had the greatest or least tumour shrinkage in a phase 2 trial of 215 patients treated with pazopanib. We confirmed associations of candidate CAFs (those identified in the screening and from previous studies) with tumour response and progression-free survival (PFS) in 215 patients from this phase 2 trial with an independent analytical platform. We validated confirmed markers in 344 patients from a randomised, placebo-controlled, phase 3 clinical study of pazopanib.

FINDINGS

Five candidate markers emerged from initial screening-interleukin 6, interleukin 8, hepatocyte growth factor (HGF), tissue inhibitor of metalloproteinases (TIMP)-1, and E-selectin. Confirmatory analyses identified associations of interleukin 6, interleukin 8, VEGF, osteopontin, E-selectin, and HGF with continuous tumour shrinkage or PFS in patients treated with pazopanib. In the validation set of samples from the phase 3 trial, patients treated with pazopanib who had high concentrations (relative to median) of interleukin 8 (p=0·006), osteopontin (p=0·0004), HGF (p=0·010), and TIMP-1 (p=0·006) had shorter PFS than did those with low concentrations. In the placebo group, high concentrations of interleukin 6 (p<0·0001), interleukin 8 (p=0·002), and osteopontin (p<0·0001) were all prognostically associated with shorter PFS. These factors were stronger prognostic markers than were standard clinical classifications (Eastern Cooperative Oncology Group, Memorial Sloan-Kettering Cancer Center, and Heng criteria). High concentrations of interleukin 6 were predictive of improved relative PFS benefit from pazopanib compared with placebo (p(interaction)=0·009); standard clinical classifications were not predictive of PFS benefit.

INTERPRETATION

CAF profiles could provide prognostic information beyond that of standard clinical classification and identify markers predictive of pazopanib benefit in patients with metastatic renal-cell carcinoma. Further studies of the predictive effects of these markers in different populations and with different drugs (eg, mTOR inhibitors) are warranted.

FUNDING

GlaxoSmithKline.

摘要

背景

有几种靶向药物被批准用于治疗转移性肾细胞癌患者,但尚无可用的预测临床疗效的验证生物标志物。我们旨在评估预处理血浆细胞因子和血管生成因子(CAFs)浓度与帕唑帕尼治疗的 2 期和 3 期试验数据之间的预后和预测相关性。

方法

我们使用了一种三步法来筛选、确认和验证前瞻性 CAF 生物标志物。我们在 215 名接受帕唑帕尼治疗的患者的 2 期试验中筛选了 129 名患者中肿瘤缩小最大或最小的 17 种 CAFs。我们使用独立的分析平台在来自该 2 期试验的 215 名患者中确认候选 CAFs(通过筛选和先前研究确定的那些)与肿瘤反应和无进展生存期(PFS)之间的关联。我们在来自帕唑帕尼随机、安慰剂对照、3 期临床试验的 344 名患者中验证了确认的标志物。

结果

初步筛选产生了 5 种候选标志物——白细胞介素 6、白细胞介素 8、肝细胞生长因子(HGF)、金属蛋白酶组织抑制剂(TIMP)-1 和 E-选择素。确认分析确定白细胞介素 6、白细胞介素 8、VEGF、骨桥蛋白、E-选择素和 HGF 与接受帕唑帕尼治疗的患者的连续肿瘤缩小或 PFS 相关。在 3 期试验的验证样本集中,与低浓度相比,接受帕唑帕尼治疗的患者中白细胞介素 8(p=0.006)、骨桥蛋白(p=0.0004)、HGF(p=0.010)和 TIMP-1(p=0.006)浓度较高的患者的 PFS 更短。在安慰剂组中,白细胞介素 6(p<0.0001)、白细胞介素 8(p=0.002)和骨桥蛋白(p<0.0001)浓度较高均与较短的 PFS 呈预后相关。这些因素是比标准临床分类(东部合作肿瘤学组、纪念斯隆凯特琳癌症中心和 Heng 标准)更强的预后标志物。与安慰剂相比,白细胞介素 6 浓度较高预测帕唑帕尼相对 PFS 获益改善(p(交互)=0.009);标准临床分类不能预测 PFS 获益。

解释

CAF 谱可以提供超出标准临床分类的预后信息,并确定预测转移性肾细胞癌患者接受帕唑帕尼治疗获益的标志物。需要进一步研究这些标志物在不同人群和不同药物(例如 mTOR 抑制剂)中的预测作用。

资金来源

葛兰素史克公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验