Suppr超能文献

P 体和应激颗粒:在翻译和 mRNA 降解控制中的可能作用。

P-bodies and stress granules: possible roles in the control of translation and mRNA degradation.

机构信息

Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, Arizona 85721-0206, USA.

出版信息

Cold Spring Harb Perspect Biol. 2012 Sep 1;4(9):a012286. doi: 10.1101/cshperspect.a012286.

Abstract

The control of translation and mRNA degradation is important in the regulation of eukaryotic gene expression. In general, translation and steps in the major pathway of mRNA decay are in competition with each other. mRNAs that are not engaged in translation can aggregate into cytoplasmic mRNP granules referred to as processing bodies (P-bodies) and stress granules, which are related to mRNP particles that control translation in early development and neurons. Analyses of P-bodies and stress granules suggest a dynamic process, referred to as the mRNA Cycle, wherein mRNPs can move between polysomes, P-bodies and stress granules although the functional roles of mRNP assembly into higher order structures remain poorly understood. In this article, we review what is known about the coupling of translation and mRNA degradation, the properties of P-bodies and stress granules, and how assembly of mRNPs into larger structures might influence cellular function.

摘要

翻译和 mRNA 降解的控制在真核基因表达的调控中非常重要。一般来说,翻译和 mRNA 降解主要途径中的步骤相互竞争。未参与翻译的 mRNA 可以聚集形成细胞质 mRNP 颗粒,称为处理体(P 体)和应激颗粒,这些颗粒与控制早期发育和神经元中翻译的 mRNP 颗粒有关。对 P 体和应激颗粒的分析表明,存在一个称为“mRNA 循环”的动态过程,其中 mRNP 可以在多核糖体、P 体和应激颗粒之间移动,尽管 mRNP 组装成更高阶结构的功能作用仍知之甚少。在本文中,我们回顾了已知的翻译和 mRNA 降解的偶联、P 体和应激颗粒的性质,以及 mRNP 组装成更大结构如何影响细胞功能。

相似文献

1
P-bodies and stress granules: possible roles in the control of translation and mRNA degradation.
Cold Spring Harb Perspect Biol. 2012 Sep 1;4(9):a012286. doi: 10.1101/cshperspect.a012286.
2
Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs.
Curr Opin Cell Biol. 2009 Jun;21(3):403-8. doi: 10.1016/j.ceb.2009.03.005. Epub 2009 Apr 23.
3
Eukaryotic stress granules: the ins and outs of translation.
Mol Cell. 2009 Dec 25;36(6):932-41. doi: 10.1016/j.molcel.2009.11.020.
4
Analysis of RNA helicases in P-bodies and stress granules.
Methods Enzymol. 2012;511:323-46. doi: 10.1016/B978-0-12-396546-2.00015-2.
5
Plant stress granules and mRNA processing bodies are distinct from heat stress granules.
Plant J. 2008 Nov;56(4):517-30. doi: 10.1111/j.1365-313X.2008.03623.x. Epub 2008 Aug 6.
6
The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex.
Mol Cell. 2011 Sep 16;43(6):962-72. doi: 10.1016/j.molcel.2011.08.008.
7
Cytoplasmic mRNPs revisited: Singletons and condensates.
Bioessays. 2020 Dec;42(12):e2000097. doi: 10.1002/bies.202000097. Epub 2020 Nov 4.
8
mRNP granules. Assembly, function, and connections with disease.
RNA Biol. 2014;11(8):1019-30. doi: 10.4161/15476286.2014.972208.
10
mRNPs meet stress granules.
FEBS Lett. 2017 Sep;591(17):2534-2542. doi: 10.1002/1873-3468.12765. Epub 2017 Aug 8.

引用本文的文献

2
Heterologous expression of heat-resistant obscure (Hero) proteins enhances thermotolerance in plants.
iScience. 2025 Jul 30;28(9):113249. doi: 10.1016/j.isci.2025.113249. eCollection 2025 Sep 19.
3
Wnt target IQGAP3 promotes Wnt signaling via disrupting Axin1-CK1α interaction.
Oncogene. 2025 Aug 19. doi: 10.1038/s41388-025-03512-y.
4
Translational reprogramming under heat stress: a plant's perspective.
R Soc Open Sci. 2025 Jul 16;12(7):250132. doi: 10.1098/rsos.250132. eCollection 2025 Jul.
5
Surface-Tethering Enhances Precision in Measuring Diffusion Within 3D Protein Condensates.
bioRxiv. 2025 Jun 17:2025.06.11.659185. doi: 10.1101/2025.06.11.659185.
6
7
Selective RNA sequestration in biomolecular condensates directs cell fate transitions.
bioRxiv. 2025 May 10:2025.05.08.652299. doi: 10.1101/2025.05.08.652299.
8
Comprehensive protein datasets and benchmarking for liquid-liquid phase separation studies.
Genome Biol. 2025 Jul 8;26(1):198. doi: 10.1186/s13059-025-03668-6.
9
The quantitative impact of 3'UTRs on gene expression.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf568.
10
Overexpression in of an intrinsically disordered protein segment of UT impairs the parasite's proteostasis and reduces its growth rate.
Front Cell Infect Microbiol. 2025 May 13;15:1565814. doi: 10.3389/fcimb.2025.1565814. eCollection 2025.

本文引用的文献

1
Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins.
Mol Cell. 2012 Jan 27;45(2):244-54. doi: 10.1016/j.molcel.2011.11.026.
2
The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex.
EMBO J. 2012 Jan 18;31(2):279-90. doi: 10.1038/emboj.2011.408. Epub 2011 Nov 15.
4
miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs.
Nat Struct Mol Biol. 2011 Oct 7;18(11):1218-26. doi: 10.1038/nsmb.2166.
5
GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets.
Mol Cell. 2011 Oct 7;44(1):120-33. doi: 10.1016/j.molcel.2011.09.007.
6
No-go decay: a quality control mechanism for RNA in translation.
Wiley Interdiscip Rev RNA. 2010 Jul-Aug;1(1):132-41. doi: 10.1002/wrna.17. Epub 2010 May 6.
7
The cAMP-dependent protein kinase signaling pathway is a key regulator of P body foci formation.
Mol Cell. 2011 Sep 16;43(6):973-81. doi: 10.1016/j.molcel.2011.06.032.
8
The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex.
Mol Cell. 2011 Sep 16;43(6):962-72. doi: 10.1016/j.molcel.2011.08.008.
9
The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics.
J Cell Biol. 2011 Aug 22;194(4):527-37. doi: 10.1083/jcb.201007151. Epub 2011 Aug 15.
10
Stm1 modulates translation after 80S formation in Saccharomyces cerevisiae.
RNA. 2011 May;17(5):835-42. doi: 10.1261/rna.2677311. Epub 2011 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验