Suppr超能文献

AtGSNOR1 功能对于拟南芥的多个发育程序是必需的。

AtGSNOR1 function is required for multiple developmental programs in Arabidopsis.

机构信息

Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK.

出版信息

Planta. 2012 Sep;236(3):887-900. doi: 10.1007/s00425-012-1697-8. Epub 2012 Jul 6.

Abstract

Nitric oxide (NO) has been proposed to regulate a diverse array of activities during plant growth, development and immune function. S-nitrosylation, the addition of an NO moiety to a reactive cysteine thiol, to form an S-nitrosothiol (SNO), is emerging as a prototypic redox-based post-translational modification. An ARABIDOPSIS THALIANA S-NITROSOGLUTATHIONE (GSNO) REDUCTASE (AtGSNOR1) is thought to be the major regulator of total cellular SNO levels in this plant species. Here, we report on the impact of loss- and gain-of-function mutations in AtGSNOR1 upon plant growth and development. Loss of AtGSNOR1 function in atgsnor1-3 plants increased the number of initiated higher order axillary shoots that remain active, resulting in a loss of apical dominance relative to wild type. In addition atgsnor1-3 affected leaf shape, germination, 2,4-D sensitivity and reduced hypocotyl elongation in both light and dark grown seedlings. Silique size and seed production were also decreased in atgsnor1-3 plants and the latter was reduced in atgsnor1-1 plants, which overexpress AtGSNOR1. Overexpression of AtGSNOR1 slightly delayed flowering time in both long and short days, whereas atgsnor1-3 showed early flowering compared to wild type. In the atgsnor1-3 line, FLOWERING LOCUS C (FLC) expression was reduced, whereas transcription of CONSTANS (CO) was enhanced. Therefore, AtGSNOR1 may negatively regulate the autonomous and photoperiod flowering time pathways. Both overexpression and loss of AtGSNOR1 function also reduced primary root growth, while root hair development was increased in atgsnor1-1 and reduced in atgsnor1-3 plants. Collectively, our findings imply that AtGSNOR1 controls multiple genetic networks integral to plant growth and development.

摘要

一氧化氮(NO)被提出调节植物生长、发育和免疫功能过程中的各种活动。S-亚硝基化,即向一个具有反应性的半胱氨酸巯基添加一个 NO 部分,形成 S-亚硝酰谷胱甘肽(SNO),正在成为一种典型的基于氧化还原的翻译后修饰。拟南芥 S-亚硝酰谷胱甘肽(GSNO)还原酶(AtGSNOR1)被认为是该植物物种中总细胞 SNO 水平的主要调节剂。在这里,我们报告了 AtGSNOR1 功能丧失和获得突变对植物生长和发育的影响。atgsnor1-3 植物中 AtGSNOR1 功能的丧失增加了启动的更高阶侧枝芽的数量,这些芽保持活跃,导致相对于野生型失去顶端优势。此外,atgsnor1-3 影响叶片形状、萌发、2,4-D 敏感性,并减少光和黑暗培养的幼苗中胚轴的伸长。atgsnor1-3 植物的蒴果大小和种子产量也减少,atgsnor1-1 植物中后者减少,后者过表达 AtGSNOR1。AtGSNOR1 的过表达在长日和短日条件下都略微延迟了开花时间,而 atgsnor1-3 与野生型相比则提前开花。在 atgsnor1-3 系中,FLOWERING LOCUS C(FLC)的表达减少,而 CONSTANS(CO)的转录增强。因此,AtGSNOR1 可能负调控自主和光周期开花时间途径。AtGSNOR1 的过表达和功能丧失也减少了主根的生长,而 atgsnor1-1 植物的根毛发育增加,atgsnor1-3 植物的根毛发育减少。总的来说,我们的研究结果表明,AtGSNOR1 控制着植物生长和发育过程中多个与遗传网络相关的关键过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验