Suppr超能文献

白细胞在 P 选择素上的滚动:细胞质黏度影响的三维数值研究。

Leukocyte rolling on P-selectin: a three-dimensional numerical study of the effect of cytoplasmic viscosity.

机构信息

Department of Biomedical Engineering and Center for Computational Science, Tulane University, New Orleans, Louisiana, USA.

出版信息

Biophys J. 2012 Apr 18;102(8):1757-66. doi: 10.1016/j.bpj.2012.03.018.

Abstract

Rolling leukocytes deform and show a large area of contact with endothelium under physiological flow conditions. We studied the effect of cytoplasmic viscosity on leukocyte rolling using our three-dimensional numerical algorithm that treats leukocyte as a compound droplet in which the core phase (nucleus) and the shell phase (cytoplasm) are viscoelastic fluids. The algorithm includes the mechanical properties of the cell cortex by cortical tension and considers leukocyte microvilli that deform viscoelastically and form viscous tethers at supercritical force. Stochastic binding kinetics describes binding of adhesion molecules. The leukocyte cytoplasmic viscosity plays a critical role in leukocyte rolling on an adhesive substrate. High-viscosity cells are characterized by high mean rolling velocities, increased temporal fluctuations in the instantaneous velocity, and a high probability for detachment from the substrate. A decrease in the rolling velocity, drag, and torque with the formation of a large, flat contact area in low-viscosity cells leads to a dramatic decrease in the bond force and stable rolling. Using values of viscosity consistent with step aspiration studies of human neutrophils (5-30 Pa·s), our computational model predicts the velocities and shape changes of rolling leukocytes as observed in vitro and in vivo.

摘要

在生理流动条件下,滚动的白细胞会发生变形,并与内皮细胞大面积接触。我们使用三维数值算法研究了细胞质粘度对白细胞滚动的影响,该算法将白细胞视为复合液滴,其中核心相(核)和壳相(细胞质)为粘弹性流体。该算法通过皮质张力包含了细胞膜的力学特性,并考虑了白细胞微绒毛的粘弹性变形以及在超临界力下形成粘性系链。随机结合动力学描述了粘附分子的结合。白细胞细胞质粘度在白细胞在黏附基底上滚动中起着关键作用。高粘度细胞的特征是平均滚动速度较高,瞬时速度的时间波动增加,并且从基底脱离的可能性增加。低粘度细胞中滚动速度、阻力和扭矩的降低,以及大而平坦的接触面积的形成,导致结合力显著降低和稳定滚动。使用与人类嗜中性粒细胞的步进抽吸研究一致的粘度值(5-30 Pa·s),我们的计算模型预测了体外和体内观察到的滚动白细胞的速度和形状变化。

相似文献

2
Influence of cell deformation on leukocyte rolling adhesion in shear flow.
J Biomech Eng. 1999 Dec;121(6):636-43. doi: 10.1115/1.2800866.
3
Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling.
Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1439-50. doi: 10.1152/ajpheart.91536.2007. Epub 2008 Jul 25.
4
A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling.
Biophys J. 2005 Jan;88(1):96-104. doi: 10.1529/biophysj.104.051029. Epub 2004 Oct 15.
5
Effect of microvillus deformability on leukocyte adhesion explored using adhesive dynamics simulations.
Biophys J. 2005 Jul;89(1):187-200. doi: 10.1529/biophysj.104.054171. Epub 2005 May 6.
6
A semianalytical model to study the effect of cortical tension on cell rolling.
Biophys J. 2010 Dec 15;99(12):3870-9. doi: 10.1016/j.bpj.2010.10.038.
7
A computational study of leukocyte adhesion and its effect on flow pattern in microvessels.
J Theor Biol. 2008 Sep 21;254(2):483-98. doi: 10.1016/j.jtbi.2008.05.020. Epub 2008 May 29.
8
Viscosity-independent velocity of neutrophils rolling on p-selectin in vitro or in vivo.
Microcirculation. 2002 Dec;9(6):523-36. doi: 10.1038/sj.mn.7800165.
9
Event-tracking model of adhesion identifies load-bearing bonds in rolling leukocytes.
Microcirculation. 2009 Feb;16(2):115-30. doi: 10.1080/10739680802462792. Epub 2008 Oct 16.
10
The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling.
J Cell Biol. 1997 Sep 8;138(5):1169-80. doi: 10.1083/jcb.138.5.1169.

引用本文的文献

1
Neutrophil diversity and function in health and disease.
Signal Transduct Target Ther. 2024 Dec 6;9(1):343. doi: 10.1038/s41392-024-02049-y.
2
The role of adhesive receptor patterns on cell transport in complex microvessels.
Biomech Model Mechanobiol. 2022 Aug;21(4):1079-1098. doi: 10.1007/s10237-022-01575-4. Epub 2022 May 4.
3
Elongation Index as a Sensitive Measure of Cell Deformation in High-Throughput Microfluidic Systems.
Biophys J. 2020 Aug 4;119(3):493-501. doi: 10.1016/j.bpj.2020.06.027. Epub 2020 Jul 7.
5
Localization of Rolling and Firm-Adhesive Interactions Between Circulating Tumor Cells and the Microvasculature Wall.
Cell Mol Bioeng. 2020 Jan 24;13(2):141-154. doi: 10.1007/s12195-020-00610-7. eCollection 2020 Apr.
6
Cell trapping in Y-junction microchannels: A numerical study of the bifurcation angle effect in inertial microfluidics.
Phys Fluids (1994). 2019 Aug;31(8):082003. doi: 10.1063/1.5113516. Epub 2019 Aug 9.
7
Role of deformable cancer cells on wall shear stress-associated-VEGF secretion by endothelium in microvasculature.
PLoS One. 2019 Feb 22;14(2):e0211418. doi: 10.1371/journal.pone.0211418. eCollection 2019.
8
Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
Biophys J. 2017 Oct 3;113(7):1574-1584. doi: 10.1016/j.bpj.2017.06.073.
9
Mapping cell surface adhesion by rotation tracking and adhesion footprinting.
Sci Rep. 2017 Mar 14;7:44502. doi: 10.1038/srep44502.
10
Computational study of cell adhesion and rolling in flow channel by meshfree method.
Comput Methods Biomech Biomed Engin. 2017 Jun;20(8):832-841. doi: 10.1080/10255842.2017.1303051. Epub 2017 Mar 14.

本文引用的文献

1
Biomechanics of leukocyte rolling.
Biorheology. 2011;48(1):1-35. doi: 10.3233/BIR-2011-0579.
2
Dynamics of Microvillus Extension and Tether Formation in Rolling Leukocytes.
Cell Mol Bioeng. 2009;2(2):207-217. doi: 10.1007/s12195-009-0063-9.
3
Event-tracking model of adhesion identifies load-bearing bonds in rolling leukocytes.
Microcirculation. 2009 Feb;16(2):115-30. doi: 10.1080/10739680802462792. Epub 2008 Oct 16.
4
3D computational modeling and simulation of leukocyte rolling adhesion and deformation.
Comput Biol Med. 2008 Jun;38(6):738-53. doi: 10.1016/j.compbiomed.2008.04.002. Epub 2008 May 22.
5
Simulation of neutrophil deformation and transport in capillaries using newtonian and viscoelastic drop models.
Ann Biomed Eng. 2007 May;35(5):766-80. doi: 10.1007/s10439-007-9286-x. Epub 2007 Mar 23.
6
Structural basis of integrin regulation and signaling.
Annu Rev Immunol. 2007;25:619-47. doi: 10.1146/annurev.immunol.25.022106.141618.
7
Simultaneous tether extraction contributes to neutrophil rolling stabilization: a model study.
Biophys J. 2007 Jan 15;92(2):418-29. doi: 10.1529/biophysj.105.078808. Epub 2006 Oct 27.
8
A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin.
J Biol Chem. 2006 Oct 13;281(41):30393-9. doi: 10.1074/jbc.M605452200. Epub 2006 Aug 9.
9
Formation of perfused, functional microvascular tubes in vitro.
Microvasc Res. 2006 May;71(3):185-96. doi: 10.1016/j.mvr.2006.02.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验