Suppr超能文献

FPGA 实现广义海布算法的纹理分类。

FPGA implementation of Generalized Hebbian Algorithm for texture classification.

机构信息

Department of Electronic Engineering, National Ilan University, Yilan 260, Taiwan.

出版信息

Sensors (Basel). 2012;12(5):6244-68. doi: 10.3390/s120506244. Epub 2012 May 10.

Abstract

This paper presents a novel hardware architecture for principal component analysis. The architecture is based on the Generalized Hebbian Algorithm (GHA) because of its simplicity and effectiveness. The architecture is separated into three portions: the weight vector updating unit, the principal computation unit and the memory unit. In the weight vector updating unit, the computation of different synaptic weight vectors shares the same circuit for reducing the area costs. To show the effectiveness of the circuit, a texture classification system based on the proposed architecture is physically implemented by Field Programmable Gate Array (FPGA). It is embedded in a System-On-Programmable-Chip (SOPC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient design for attaining both high speed performance and low area costs.

摘要

本文提出了一种新的主成分分析硬件架构。该架构基于广义海伯算法(GHA),因其简单有效而被采用。该架构分为三部分:权向量更新单元、主计算单元和存储单元。在权向量更新单元中,不同的突触权向量的计算共享相同的电路,以降低面积成本。为了展示电路的有效性,一个基于所提出架构的纹理分类系统通过现场可编程门阵列(FPGA)进行物理实现。它被嵌入到一个可编程片上系统(SOPC)平台中进行性能测量。实验结果表明,所提出的架构是一种高效的设计,可以实现高速性能和低面积成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/389a/3386739/c3ce67a8df6c/sensors-12-06244f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验