Suppr超能文献

静息态网络的聚类。

Clustering of resting state networks.

机构信息

Washington University School of Medicine, Saint Louis, Missouri, United States of America.

出版信息

PLoS One. 2012;7(7):e40370. doi: 10.1371/journal.pone.0040370. Epub 2012 Jul 9.

Abstract

BACKGROUND

The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm.

METHODOLOGY/PRINCIPAL FINDINGS: The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21 healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under different conditions and was robust to different methods of initialization.

CONCLUSIONS/SIGNIFICANCE: The clustering of resting state activity using different optimal numbers of clusters identified resting state networks comparable to previously obtained results. This work reinforces the observation that resting state networks are hierarchically organized.

摘要

背景

本研究的目的是使用数据驱动的聚类算法证明健康大脑静息状态活动的层次结构。

方法/主要发现:模糊 C 均值聚类算法应用于分别采集的两组健康个体(一组 17 名,另一组 21 名)的皮质和皮质下灰质的静息态 fMRI 数据。使用了不同数量的聚类和不同的起始条件。聚类分散度测量确定了最佳聚类数量。内积度量提供了不同聚类之间相似性的度量。两个聚类结果发现了任务负系统和任务正系统。使用七个和十一个聚类时,聚类分散度最小。七个和十一个聚类结果中的每个聚类都与任务负系统或任务正系统相关。应用该算法寻找七个聚类,可恢复先前描述的静息态网络,包括默认模式网络、额顶控制网络、腹侧和背侧注意网络、躯体运动、视觉和语言网络。语言和腹侧注意网络与皮质下结构有显著关联。这种分割在不同条件下的大多数算法运行中都得到了一致的发现,并且对不同的初始化方法具有鲁棒性。

结论/意义:使用不同最佳聚类数量对静息状态活动进行聚类,可识别出与先前获得的结果相媲美的静息状态网络。这项工作强化了静息状态网络是层次组织的观察结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b5e/3392237/f2c52607eae0/pone.0040370.g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验