Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA.
ACS Nano. 2012 Aug 28;6(8):6793-802. doi: 10.1021/nn301528h. Epub 2012 Jul 23.
We construct nanoparticle dimers linked by DNA. These dimers are basic units in a possible multiscale, hierarchical assembly and serve as a model system to understand DNA-mediated interactions, especially in the nontrivial regime when the nanoparticle and DNA are comparable in their sizes. We examine the structure of nanoparticle dimers in detail by a combination of scattering experiments and molecular simulations. We find that, for a given DNA length, the interparticle separation within the dimer is controlled primarily by the number of linking DNA. We summarize our findings in a simple model that captures the interplay of the number of DNA bridges, their length, the particle's curvature, and the excluded volume effects. We demonstrate the applicability of the model to our results, without any free parameters. As a consequence, the increase of dimer separation with increasing temperature can be understood as a result of changing the number of connecting DNA.
我们构建了由 DNA 连接的纳米粒子二聚体。这些二聚体是多尺度、层次化组装的基本单元,可作为理解 DNA 介导相互作用的模型系统,特别是在纳米粒子和 DNA 尺寸相当的复杂情况下。我们通过散射实验和分子模拟的组合,详细研究了纳米粒子二聚体的结构。我们发现,对于给定的 DNA 长度,二聚体内的粒子间分离主要由连接 DNA 的数量控制。我们在一个简单的模型中总结了我们的发现,该模型捕获了 DNA 桥的数量、长度、粒子曲率和排除体积效应的相互作用。我们证明了该模型对我们结果的适用性,无需任何自由参数。因此,随着温度的升高二聚体分离的增加可以理解为连接 DNA 数量的变化的结果。