Department of Veterinary Comparative Anatomy, Physiology and Pharmacology, Washington State University, Pullman, WA 99164, USA.
Neuroscience. 2012 Oct 11;222:181-90. doi: 10.1016/j.neuroscience.2012.07.010. Epub 2012 Jul 13.
Brainstem A2/C2 catecholamine (CA) neurons within the solitary tract nucleus (NTS) influence many homeostatic functions, including food intake, stress, respiratory and cardiovascular reflexes. They also play a role in both opioid reward and withdrawal. Injections of opioids into the NTS modulate many autonomic functions influenced by catecholamine neurons including food intake and cardiac function. We recently showed that NTS-CA neurons are directly activated by incoming visceral afferent inputs. Here we determined whether opioid agonists modulate afferent activation of NTS-CA neurons using transgenic mice with EGFP expressed under the control of the tyrosine hydroxylase promoter (TH-EGFP) to identify catecholamine neurons. The opioid agonist Met-enkephalin (Met-Enk) significantly attenuated solitary tract-evoked excitatory postsynaptic currents (ST-EPSCs) in NTS TH-EGFP neurons by 80%, an effect reversed by wash or the mu opioid receptor-specific antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP). Met-Enk had a significantly greater effect to inhibit afferent inputs onto TH-EGFP-positive neurons than EGFP-negative neurons, which were only inhibited by 50%. The mu agonist, DAMGO, also inhibited the ST-EPSC in TH-EGFP neurons in a dose-dependent manner. In contrast, neither the delta agonist DPDPE, nor the kappa agonist, U69,593, consistently inhibited the ST-EPSC amplitude. Met-Enk and DAMGO increased the paired pulse ratio, decreased the frequency, but not amplitude, of mini-EPSCs and had no effect on holding current, input resistance or current-voltage relationships in TH-EGFP neurons, suggesting a presynaptic mechanism of action on afferent terminals. Met-Enk significantly reduced both the basal firing rate of NTS TH-EGFP neurons and the ability of afferent stimulation to evoke an action potential. These results suggest that opioids inhibit NTS-CA neurons by reducing an excitatory afferent drive onto these neurons through presynaptic inhibition of glutamate release and elucidate one potential mechanism by which opioids could control autonomic functions and modulate reward and opioid withdrawal symptoms at the level of the NTS.
孤束核(NTS)内的脑干 A2/C2 儿茶酚胺(CA)神经元影响许多稳态功能,包括摄食、应激、呼吸和心血管反射。它们在阿片类药物奖赏和戒断中也发挥作用。将阿片类药物注入 NTS 可调节 CA 神经元影响的许多自主功能,包括摄食和心脏功能。我们最近表明,传入内脏传入输入直接激活 NTS-CA 神经元。在这里,我们确定阿片类激动剂是否通过使用在酪氨酸羟化酶启动子(TH-EGFP)控制下表达 EGFP 的转基因小鼠来调节 NTS-CA 神经元的传入激活。阿片类激动剂 Met-脑啡肽(Met-Enk)显著减弱 NTS TH-EGFP 神经元的孤束诱发性兴奋性突触后电流(ST-EPSC)80%,该效应可通过冲洗或 μ 阿片受体特异性拮抗剂 D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2)(CTOP)逆转。Met-Enk 对抑制传入刺激到 TH-EGFP 阳性神经元的作用明显大于对 EGFP 阴性神经元的作用,后者仅被抑制 50%。μ 激动剂 DAMGO 也以剂量依赖性方式抑制 TH-EGFP 神经元中的 ST-EPSC。相比之下,δ 激动剂 DPDPE 或 κ 激动剂 U69,593 均未一致抑制 ST-EPSC 幅度。Met-Enk 和 DAMGO 增加了成对脉冲比,降低了 mini-EPSCs 的频率,但不改变幅度,对 TH-EGFP 神经元的保持电流、输入电阻或电流-电压关系没有影响,表明其作用于传入末梢的是一种突触前机制。Met-Enk 显著降低了 NTS TH-EGFP 神经元的基础放电率和传入刺激诱发动作电位的能力。这些结果表明,阿片类药物通过抑制谷氨酸释放的突触前抑制来减少对这些神经元的兴奋性传入驱动,从而抑制 NTS-CA 神经元,并阐明阿片类药物在 NTS 水平上控制自主功能和调节奖赏和阿片类戒断症状的一种潜在机制。