Suppr超能文献

北美洲玉米的历史基因组学。

Historical genomics of North American maize.

机构信息

Department of Plant Sciences and Center for Population Biology and The Genome Center, University of California, Davis, CA 95616, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12420-5. doi: 10.1073/pnas.1209275109. Epub 2012 Jul 16.

Abstract

Since the advent of modern plant breeding in the 1930s, North American maize has undergone a dramatic adaptation to high-input agriculture. Despite the importance of genetic contributions to historical yield increases, little is known about the underlying genomic changes. Here we use high-density SNP genotyping to characterize a set of North American maize lines spanning the history of modern breeding. We provide a unique analysis of genome-wide developments in genetic diversity, ancestry, and selection. The genomic history of maize is marked by a steady increase in genetic differentiation and linkage disequilibrium, whereas allele frequencies in the total population have remained relatively constant. These changes are associated with increasing genetic separation of breeding pools and decreased diversity in the ancestry of individual lines. We confirm that modern heterotic groups are the product of ongoing divergence from a relatively homogeneous landrace population, but show that differential landrace ancestry remains evident. Using a recent association approach, we characterize signals of directional selection throughout the genome, identifying a number of candidate genes of potential agronomic relevance. However, overall we find that selection has had limited impact on genome-wide patterns of diversity and ancestry, with little evidence for individual lines contributing disproportionately to the accumulation of favorable alleles in today's elite germplasm. Our data suggest breeding progress has mainly involved selection and recombination of relatively common alleles, contributed by a representative but limited set of ancestral lines.

摘要

自 20 世纪 30 年代现代植物育种出现以来,北美玉米经历了一场适应高投入农业的剧烈变化。尽管遗传贡献对历史产量的增加至关重要,但对潜在的基因组变化知之甚少。在这里,我们使用高密度 SNP 基因分型来描述一组跨越现代育种历史的北美玉米品系。我们对遗传多样性、祖先和选择的全基因组发展进行了独特的分析。玉米的基因组历史以遗传分化和连锁不平衡的稳步增加为特征,而在整个群体中的等位基因频率保持相对稳定。这些变化与繁殖群体的遗传分离不断增加以及个别品系的祖先多样性减少有关。我们证实,现代杂种群体是从相对同质的地方品种群体不断分化的产物,但表明不同的地方品种祖先仍然明显存在。使用最近的关联方法,我们描述了整个基因组中定向选择的信号,确定了一些具有潜在农艺相关性的候选基因。然而,总的来说,我们发现选择对多样性和祖先的全基因组模式影响有限,几乎没有证据表明个别品系对当今精英种质中有利等位基因的积累有不成比例的贡献。我们的数据表明,育种进展主要涉及相对常见等位基因的选择和重组,这些等位基因来自一组代表性但有限的祖先品系。

相似文献

1
Historical genomics of North American maize.
Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12420-5. doi: 10.1073/pnas.1209275109. Epub 2012 Jul 16.
2
Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms.
Theor Appl Genet. 2009 Dec;120(1):93-115. doi: 10.1007/s00122-009-1162-7. Epub 2009 Oct 11.
3
Genome-wide selection and genetic improvement during modern maize breeding.
Nat Genet. 2020 Jun;52(6):565-571. doi: 10.1038/s41588-020-0616-3. Epub 2020 Apr 27.
5
A comprehensive study of the genomic differentiation between temperate Dent and Flint maize.
Genome Biol. 2016 Jul 8;17(1):137. doi: 10.1186/s13059-016-1009-x.
9
Genome-wide genetic changes during modern breeding of maize.
Nat Genet. 2012 Jun 3;44(7):812-5. doi: 10.1038/ng.2312.
10
Genetic relatedness of previously Plant-Variety-Protected commercial maize inbreds.
PLoS One. 2017 Dec 13;12(12):e0189277. doi: 10.1371/journal.pone.0189277. eCollection 2017.

引用本文的文献

3
An ARF gene mutation creates flint kernel architecture in dent maize.
Nat Commun. 2024 Mar 22;15(1):2565. doi: 10.1038/s41467-024-46955-9.
4
A genomic analysis of the University of Nebraska Replicated Recurrent Selection program.
Theor Appl Genet. 2023 Nov 11;136(12):243. doi: 10.1007/s00122-023-04475-y.
5
Diamonds in the not-so-rough: Wild relative diversity hidden in crop genomes.
PLoS Biol. 2023 Jul 13;21(7):e3002235. doi: 10.1371/journal.pbio.3002235. eCollection 2023 Jul.
7
De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis.
Nat Genet. 2023 Feb;55(2):312-323. doi: 10.1038/s41588-022-01283-w. Epub 2023 Jan 16.
8
Genome sequencing reveals evidence of adaptive variation in the genus Zea.
Nat Genet. 2022 Nov;54(11):1736-1745. doi: 10.1038/s41588-022-01184-y. Epub 2022 Oct 20.
9
Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding.
Nat Plants. 2022 Jul;8(7):750-763. doi: 10.1038/s41477-022-01190-2. Epub 2022 Jul 18.

本文引用的文献

2
Comparative population genomics of maize domestication and improvement.
Nat Genet. 2012 Jun 3;44(7):808-11. doi: 10.1038/ng.2309.
3
Crop genomics: advances and applications.
Nat Rev Genet. 2011 Dec 29;13(2):85-96. doi: 10.1038/nrg3097.
4
Distinct genetic architectures for male and female inflorescence traits of maize.
PLoS Genet. 2011 Nov;7(11):e1002383. doi: 10.1371/journal.pgen.1002383. Epub 2011 Nov 17.
5
Genome-wide association study of leaf architecture in the maize nested association mapping population.
Nat Genet. 2011 Feb;43(2):159-62. doi: 10.1038/ng.746. Epub 2011 Jan 9.
6
Genetic signals of origin, spread, and introgression in a large sample of maize landraces.
Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1088-92. doi: 10.1073/pnas.1013011108. Epub 2010 Dec 28.
7
Using environmental correlations to identify loci underlying local adaptation.
Genetics. 2010 Aug;185(4):1411-23. doi: 10.1534/genetics.110.114819. Epub 2010 Jun 1.
8
Fine scale genetic structure in the wild ancestor of maize (Zea mays ssp. parviglumis).
Mol Ecol. 2010 Mar;19(6):1162-73. doi: 10.1111/j.1365-294X.2010.04559.x. Epub 2010 Feb 15.
9
Genomic selection in plant breeding: from theory to practice.
Brief Funct Genomics. 2010 Mar;9(2):166-77. doi: 10.1093/bfgp/elq001. Epub 2010 Feb 15.
10
Population structure and eigenanalysis.
PLoS Genet. 2006 Dec;2(12):e190. doi: 10.1371/journal.pgen.0020190.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验