Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, 45071 Orléans Cedex 2, France.
J Phys Chem A. 2012 Aug 9;116(31):8191-200. doi: 10.1021/jp305366v. Epub 2012 Jul 30.
The heterogeneous interaction of H(2)O(2) with TiO(2) surface was investigated under dark conditions and in the presence of UV light using a low pressure flow tube reactor coupled with a quadrupole mass spectrometer. The uptake coefficients were measured as a function of the initial concentration of gaseous H(2)O(2) (H(2)O(2) = (0.17-120) × 10(12) molecules cm(-3)), irradiance intensity (J(NO(2)) = 0.002-0.012 s(-1)), relative humidity (RH = 0.003-82%), and temperature (T = 275-320 K). Under dark conditions, a deactivation of TiO(2) surface upon exposure to H(2)O(2) was observed, and only initial uptake coefficient of H(2)O(2) was measured, given by the following expression: γ(0)(dark) = 4.1 × 10(-3)/(1 + RH(0.65)) (calculated using BET surface area, estimated conservative uncertainty of 30%) at T = 300 K. The steady-state uptake coefficient measured on UV irradiated TiO(2) surface, γ(ss)(UV), was found to be independent of RH and showed a strong inverse dependence on [H(2)O(2)] and linear dependence on photon flux. In addition, slight negative temperature dependence, γ(ss)(UV) = 7.2 × 10(-4) exp[(460 ± 80)/T], was observed in the temperature range (275-320) K (with [H(2)O(2)] ≈ 5 × 10(11) molecules cm(-3) and J(NO(2)) = 0.012 s(-1)). Experiments with NO addition into the reactive system provided indirect evidence for HO(2) radical formation upon H(2)O(2) uptake, and the possible reaction mechanism is proposed. Finally, the atmospheric lifetime of H(2)O(2) with respect to the heterogeneous loss on mineral dust was estimated (using the uptake data for TiO(2)) to be in the range of hours during daytime, i.e., comparable to H(2)O(2) photolysis lifetime (~1 day), which is the major removal process of hydrogen peroxide in the atmosphere. These data indicate a strong potential impact of H(2)O(2) uptake on mineral aerosol on the HO(x) chemistry in the troposphere.
在黑暗条件下,并在存在紫外光的情况下,使用低压流管反应器和四极质谱仪研究了 H(2)O(2)与 TiO(2)表面的不均匀相互作用。通过测量初始气态 H(2)O(2)浓度([H(2)O(2))(0) = (0.17-120) × 10(12)分子 cm(-3))、辐照度强度(J(NO(2)) = 0.002-0.012 s(-1))、相对湿度(RH = 0.003-82%)和温度(T = 275-320 K)的函数来测量吸收系数。在黑暗条件下,观察到 TiO(2)表面在暴露于 H(2)O(2)时失活,并且仅测量到 H(2)O(2)的初始吸收系数,由以下表达式给出:γ(0)(dark) = 4.1 × 10(-3)/(1 + RH(0.65))(使用 BET 表面积计算,估计不确定度为 30%),T = 300 K。在紫外辐照的 TiO(2)表面上测量到的稳态吸收系数γ(ss)(UV),发现它与 RH 无关,并且与[H(2)O(2)]和光子通量呈强反比关系。此外,在温度范围(275-320)K 下观察到轻微的负温度依赖性γ(ss)(UV) = 7.2 × 10(-4)exp[(460 ± 80)/T],其中[H(2)O(2)] ≈ 5 × 10(11)分子 cm(-3)和 J(NO(2)) = 0.012 s(-1))。在反应体系中添加 NO 的实验提供了在 H(2)O(2)吸收时形成 HO(2)自由基的间接证据,并提出了可能的反应机制。最后,使用对矿物粉尘的非均相损耗的吸收数据(使用 TiO(2)的吸收数据)估计了 H(2)O(2)与矿物粉尘的非均相损耗的大气寿命,范围为白天的几个小时内,即在大气中 H(2)O(2)光解寿命(~1 天)内,这是 H(2)O(2)的主要去除过程。这些数据表明,H(2)O(2)在矿物气溶胶上的吸收对对流层中 HO(x)化学具有很强的潜在影响。