Suppr超能文献

有序结局数据的空间聚类检测。

Spatial cluster detection for ordinal outcome data.

机构信息

Department of Biostatistics, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Korea.

出版信息

Stat Med. 2012 Dec 20;31(29):4040-8. doi: 10.1002/sim.5475. Epub 2012 Jul 17.

Abstract

In geographical disease surveillance, spatial scan statistics are used to identify areas having unusually high or low rates of disease outcomes and to determine the statistical significance of detected clusters. The spatial scan statistic for ordinal data such as stage of cancer has been developed to detect clusters representing areas with high rates of more serious stages compared with the surrounding areas. Such areas were expressed using likelihood ratio ordering, which is a rather strict order restriction, and hence, the method might fail to detect spatial clusters with high rates of worse categories (e.g., later stage). In this paper, we relax the order restriction using stochastic ordering and examine differences between the two approaches in detecting spatial clusters. Through simulation studies, we show that the stochastic ordering-based approach has higher power, sensitivity, and positive predictive value under several scenarios. We illustrate the two methods with the use of a real data example.

摘要

在地理疾病监测中,空间扫描统计用于识别疾病结果发生率异常高或低的区域,并确定检测到的聚集的统计学意义。针对癌症分期等有序数据的空间扫描统计已经被开发出来,以检测代表与周围区域相比具有更高严重阶段比例的区域的聚集。这些区域使用似然比排序来表示,这是一种相当严格的顺序限制,因此,该方法可能无法检测到具有更高不良类别(例如晚期)比例的空间聚集。在本文中,我们使用随机排序来放宽顺序限制,并检查这两种方法在检测空间聚集方面的差异。通过模拟研究,我们表明在几种情况下,基于随机排序的方法具有更高的功效、敏感性和阳性预测值。我们使用一个实际数据示例来说明这两种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验