Suppr超能文献

在多个数据库中识别与工作相关的机动车事故。

Identifying work-related motor vehicle crashes in multiple databases.

机构信息

Intermountain Injury Control Research Center, University of Utah School of Medicine, Department of Pediatrics, Salt Lake City, Utah, USA.

出版信息

Traffic Inj Prev. 2012;13(4):348-54. doi: 10.1080/15389588.2012.658480.

Abstract

OBJECTIVE

To compare and estimate the magnitude of work-related motor vehicle crashes in Utah using 2 probabilistically linked statewide databases.

METHODS

Data from 2006 and 2007 motor vehicle crash and hospital databases were joined through probabilistic linkage. Summary statistics and capture-recapture were used to describe occupants injured in work-related motor vehicle crashes and estimate the size of this population.

RESULTS

There were 1597 occupants in the motor vehicle crash database and 1673 patients in the hospital database identified as being in a work-related motor vehicle crash. We identified 1443 occupants with at least one record from either the motor vehicle crash or hospital database indicating work-relatedness that linked to any record in the opposing database. We found that 38.7 percent of occupants injured in work-related motor vehicle crashes identified in the motor vehicle crash database did not have a primary payer code of workers' compensation in the hospital database and 40.0 percent of patients injured in work-related motor vehicle crashes identified in the hospital database did not meet our definition of a work-related motor vehicle crash in the motor vehicle crash database. Depending on how occupants injured in work-related motor crashes are identified, we estimate the population to be between 1852 and 8492 in Utah for the years 2006 and 2007.

CONCLUSIONS

Research on single databases may lead to biased interpretations of work-related motor vehicle crashes. Combining 2 population based databases may still result in an underestimate of the magnitude of work-related motor vehicle crashes. Improved coding of work-related incidents is needed in current databases.

摘要

目的

使用 2 个概率链接的全州数据库比较和估计犹他州与工作相关的机动车碰撞的严重程度。

方法

通过概率链接将 2006 年和 2007 年的机动车碰撞和医院数据库中的数据合并。使用摘要统计和捕获-再捕获来描述与工作相关的机动车碰撞中受伤的乘客,并估计该人群的规模。

结果

在机动车碰撞数据库中有 1597 名乘客,在医院数据库中有 1673 名患者被确定为与工作相关的机动车碰撞。我们确定了 1443 名乘客,他们至少有一份来自机动车碰撞或医院数据库的记录表明与对方数据库中的任何记录相关的工作相关性。我们发现,在机动车碰撞数据库中确定的 38.7%在与工作相关的机动车碰撞中受伤的乘客在医院数据库中没有工人赔偿的主要支付人代码,而在医院数据库中确定的 40.0%在与工作相关的机动车碰撞中受伤的患者不符合我们在机动车碰撞数据库中对与工作相关的机动车碰撞的定义。根据如何确定与工作相关的机动车碰撞中受伤的乘客,我们估计犹他州 2006 年和 2007 年的人数在 1852 到 8492 之间。

结论

对单个数据库的研究可能导致对与工作相关的机动车碰撞的有偏差的解释。结合 2 个基于人群的数据库仍可能导致对与工作相关的机动车碰撞的严重程度的低估。当前数据库中需要改进对与工作相关的事件的编码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验