Suppr超能文献

显著的高血糖可减弱人诱导多能干细胞衍生心肌细胞中的麻醉预处理。

Marked hyperglycemia attenuates anesthetic preconditioning in human-induced pluripotent stem cell-derived cardiomyocytes.

机构信息

Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

出版信息

Anesthesiology. 2012 Oct;117(4):735-44. doi: 10.1097/ALN.0b013e3182655e96.

Abstract

INTRODUCTION

Anesthetic preconditioning protects cardiomyocytes from oxidative stress-induced injury, but it is ineffective in patients with diabetes mellitus. To address the role of hyperglycemia in the inability of diabetic individuals to be preconditioned, we used human cardiomyocytes differentiated from induced pluripotent stem cells generated from patients with or without type 2 diabetes mellitus (DM-iPSC- and N-iPSC-CMs, respectively) to investigate the efficacy of preconditioning in varying glucose conditions (5, 11, and 25 mM).

METHODS

Induced pluripotent stem cells were induced to generate cardiomyocytes by directed differentiation. For subsequent studies, cardiomyocytes were identified by genetic labeling with enhanced green fluorescent protein driven by a cardiac-specific promoter. Cell viability was analyzed by lactate dehydrogenase assay. Confocal microscopy was utilized to measure opening of the mitochondrial permeability transition pore and the mitochondrial adenosine 5'-triphosphate-sensitive potassium channels.

RESULTS

Isoflurane (0.5 mM) preconditioning protected N-iPSC- and DM-iPSC-CMs from oxidative stress-induced lactate dehydrogenase release and mitochondrial permeability transition pore opening in 5 mM and 11 mM glucose. Isoflurane triggered mitochondrial adenosine-5'-triphosphate-sensitive potassium channel opening in N-iPSC-CMs in 5 mM and 11 mM glucose and in DM-iPSC-CMs in 5 mM glucose; 25 mM glucose disrupted anesthetic preconditioning-mediated protection in DM-iPSC- and N-iPSC-CMs.

CONCLUSIONS

The opening of mitochondrial adenosine 5'-triphosphate-sensitive potassium channels are disrupted in DM-iPSC-CMs in 11 mM and 25 mM glucose and in N-iPSC-CMs in 25 mM glucose. Cardiomyocytes derived from healthy donors and patients with a specific disease, such as diabetes in this study, open possibilities in studying genotype- and phenotype-related pathologies in a human-relevant model.

摘要

简介

麻醉预处理可保护心肌细胞免受氧化应激诱导的损伤,但在糖尿病患者中无效。为了研究高血糖在糖尿病个体无法预处理中的作用,我们使用来自有或没有 2 型糖尿病(DM-iPSC- 和 N-iPSC-CM)的患者的诱导多能干细胞分化为心肌细胞,研究在不同葡萄糖条件(5、11 和 25 mM)下预处理的效果。

方法

诱导多能干细胞通过定向分化诱导生成心肌细胞。随后,通过心脏特异性启动子驱动的增强型绿色荧光蛋白进行基因标记来鉴定心肌细胞。通过乳酸脱氢酶测定法分析细胞活力。利用共聚焦显微镜测量线粒体通透性转换孔和线粒体三磷酸腺苷敏感钾通道的开放。

结果

异氟烷(0.5 mM)预处理可保护 N-iPSC- 和 DM-iPSC-CM 免受 5 mM 和 11 mM 葡萄糖诱导的氧化应激引起的乳酸脱氢酶释放和线粒体通透性转换孔开放。异氟烷在 5 mM 和 11 mM 葡萄糖中可触发 N-iPSC-CM 中的线粒体三磷酸腺苷敏感钾通道开放,在 5 mM 葡萄糖中可触发 DM-iPSC-CM 中的通道开放;25 mM 葡萄糖破坏了 DM-iPSC-和 N-iPSC-CM 中麻醉预处理介导的保护作用。

结论

在 11 mM 和 25 mM 葡萄糖中,DM-iPSC-CM 中的线粒体三磷酸腺苷敏感钾通道开放被破坏,在 25 mM 葡萄糖中,N-iPSC-CM 中的通道也被破坏。本研究中,从健康供体和患有特定疾病(如糖尿病)的患者中获得的心肌细胞为研究人类相关模型中的基因型和表型相关病理提供了可能。

相似文献

6
In vivo differentiation of induced pluripotent stem cell-derived cardiomyocytes.
Circ J. 2013;77(5):1297-306. doi: 10.1253/circj.cj-12-0977. Epub 2013 Feb 8.
8
Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1α and LDHA.
Circ Res. 2018 Oct 12;123(9):1066-1079. doi: 10.1161/CIRCRESAHA.118.313249.
9
Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes.
Stem Cell Res. 2013 Nov;11(3):1335-47. doi: 10.1016/j.scr.2013.09.003. Epub 2013 Sep 18.
10
Role of somatic cell sources in the maturation degree of human induced pluripotent stem cell-derived cardiomyocytes.
Biochim Biophys Acta Mol Cell Res. 2020 Mar;1867(3):118538. doi: 10.1016/j.bbamcr.2019.118538. Epub 2019 Aug 28.

引用本文的文献

1
Sevoflurane-mediated modulation of oxidative myocardial injury.
J Cardiovasc Thorac Res. 2023;15(3):138-144. doi: 10.34172/jcvtr.2023.31724. Epub 2023 Sep 23.
2
Cardiomyocyte-produced miR-339-5p mediates pathology in Duchenne muscular dystrophy cardiomyopathy.
Hum Mol Genet. 2021 Nov 16;30(23):2347-2361. doi: 10.1093/hmg/ddab199.
5
Mitochondrial ROS Induce Partial Dedifferentiation of Human Mesothelioma via Upregulation of NANOG.
Antioxidants (Basel). 2020 Jul 10;9(7):606. doi: 10.3390/antiox9070606.
6
Beyond Family: Modeling Non-hereditary Heart Diseases With Human Pluripotent Stem Cell-Derived Cardiomyocytes.
Front Physiol. 2020 Apr 22;11:384. doi: 10.3389/fphys.2020.00384. eCollection 2020.
10
Stem Cell Therapies in Cardiovascular Disease.
J Cardiothorac Vasc Anesth. 2019 Jan;33(1):209-222. doi: 10.1053/j.jvca.2018.04.048. Epub 2018 Apr 26.

本文引用的文献

1
Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises.
Hum Mol Genet. 2011 Oct 15;20(R2):R109-15. doi: 10.1093/hmg/ddr336. Epub 2011 Aug 9.
2
Reengineering translational science: the time is right.
Sci Transl Med. 2011 Jul 6;3(90):90cm17. doi: 10.1126/scitranslmed.3002747.
3
The use of induced pluripotent stem cells in drug development.
Clin Pharmacol Ther. 2011 May;89(5):655-61. doi: 10.1038/clpt.2011.38. Epub 2011 Mar 23.
4
Clinical importance of anaesthetic preconditioning.
Anestezjol Intens Ter. 2010 Oct-Dec;42(4):206-12.
6
Patient-specific induced pluripotent stem-cell models for long-QT syndrome.
N Engl J Med. 2010 Oct 7;363(15):1397-409. doi: 10.1056/NEJMoa0908679. Epub 2010 Jul 21.
7
Human pluripotent stem cells in drug discovery and predictive toxicology.
Biochem Soc Trans. 2010 Aug;38(4):1051-7. doi: 10.1042/BST0381051.
8
Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: roles of ROS and Ca2+.
Am J Physiol Cell Physiol. 2010 Aug;299(2):C506-15. doi: 10.1152/ajpcell.00006.2010. Epub 2010 Jun 2.
10
Cardiomyocyte differentiation of human induced pluripotent stem cells.
Circulation. 2009 Oct 13;120(15):1513-23. doi: 10.1161/CIRCULATIONAHA.109.868885. Epub 2009 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验