Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
Anesthesiology. 2012 Oct;117(4):735-44. doi: 10.1097/ALN.0b013e3182655e96.
Anesthetic preconditioning protects cardiomyocytes from oxidative stress-induced injury, but it is ineffective in patients with diabetes mellitus. To address the role of hyperglycemia in the inability of diabetic individuals to be preconditioned, we used human cardiomyocytes differentiated from induced pluripotent stem cells generated from patients with or without type 2 diabetes mellitus (DM-iPSC- and N-iPSC-CMs, respectively) to investigate the efficacy of preconditioning in varying glucose conditions (5, 11, and 25 mM).
Induced pluripotent stem cells were induced to generate cardiomyocytes by directed differentiation. For subsequent studies, cardiomyocytes were identified by genetic labeling with enhanced green fluorescent protein driven by a cardiac-specific promoter. Cell viability was analyzed by lactate dehydrogenase assay. Confocal microscopy was utilized to measure opening of the mitochondrial permeability transition pore and the mitochondrial adenosine 5'-triphosphate-sensitive potassium channels.
Isoflurane (0.5 mM) preconditioning protected N-iPSC- and DM-iPSC-CMs from oxidative stress-induced lactate dehydrogenase release and mitochondrial permeability transition pore opening in 5 mM and 11 mM glucose. Isoflurane triggered mitochondrial adenosine-5'-triphosphate-sensitive potassium channel opening in N-iPSC-CMs in 5 mM and 11 mM glucose and in DM-iPSC-CMs in 5 mM glucose; 25 mM glucose disrupted anesthetic preconditioning-mediated protection in DM-iPSC- and N-iPSC-CMs.
The opening of mitochondrial adenosine 5'-triphosphate-sensitive potassium channels are disrupted in DM-iPSC-CMs in 11 mM and 25 mM glucose and in N-iPSC-CMs in 25 mM glucose. Cardiomyocytes derived from healthy donors and patients with a specific disease, such as diabetes in this study, open possibilities in studying genotype- and phenotype-related pathologies in a human-relevant model.
麻醉预处理可保护心肌细胞免受氧化应激诱导的损伤,但在糖尿病患者中无效。为了研究高血糖在糖尿病个体无法预处理中的作用,我们使用来自有或没有 2 型糖尿病(DM-iPSC- 和 N-iPSC-CM)的患者的诱导多能干细胞分化为心肌细胞,研究在不同葡萄糖条件(5、11 和 25 mM)下预处理的效果。
诱导多能干细胞通过定向分化诱导生成心肌细胞。随后,通过心脏特异性启动子驱动的增强型绿色荧光蛋白进行基因标记来鉴定心肌细胞。通过乳酸脱氢酶测定法分析细胞活力。利用共聚焦显微镜测量线粒体通透性转换孔和线粒体三磷酸腺苷敏感钾通道的开放。
异氟烷(0.5 mM)预处理可保护 N-iPSC- 和 DM-iPSC-CM 免受 5 mM 和 11 mM 葡萄糖诱导的氧化应激引起的乳酸脱氢酶释放和线粒体通透性转换孔开放。异氟烷在 5 mM 和 11 mM 葡萄糖中可触发 N-iPSC-CM 中的线粒体三磷酸腺苷敏感钾通道开放,在 5 mM 葡萄糖中可触发 DM-iPSC-CM 中的通道开放;25 mM 葡萄糖破坏了 DM-iPSC-和 N-iPSC-CM 中麻醉预处理介导的保护作用。
在 11 mM 和 25 mM 葡萄糖中,DM-iPSC-CM 中的线粒体三磷酸腺苷敏感钾通道开放被破坏,在 25 mM 葡萄糖中,N-iPSC-CM 中的通道也被破坏。本研究中,从健康供体和患有特定疾病(如糖尿病)的患者中获得的心肌细胞为研究人类相关模型中的基因型和表型相关病理提供了可能。