Metrum Research Group, Tariffville, CT 06081, USA.
J Pharmacokinet Pharmacodyn. 2012 Oct;39(5):479-98. doi: 10.1007/s10928-012-9263-3. Epub 2012 Jul 21.
Our objective was to develop a beta regression (BR) model to describe the longitudinal progression of the 11 item Alzheimer's disease (AD) assessment scale cognitive subscale (ADAS-cog) in AD patients in both natural history and randomized clinical trial settings, utilizing both individual patient and summary level literature data. Patient data from the coalition against major diseases database (3,223 patients), the Alzheimer's disease neruroimaging initiative study database (186 patients), and summary data from 73 literature references (representing 17,235 patients) were fit to a BR drug-disease-trial model. Treatment effects for currently available acetyl cholinesterase inhibitors, longitudinal changes in disease severity, dropout rate, placebo effect, and factors influencing these parameters were estimated in the model. Based on predictive checks and external validation, an adequate BR meta-analysis model for ADAS-cog using both summary-level and patient-level data was developed. Baseline ADAS-cog was estimated from baseline MMSE score. Disease progression was dependent on time, ApoE4 status, age, and gender. Study drop out was a function of time, baseline age, and baseline MMSE. The use of the BR constrained simulations to the 0-70 range of the ADAS-cog, even when residuals were incorporated. The model allows for simultaneous fitting of summary and patient level data, allowing for integration of all information available. A further advantage of the BR model is that it constrains values to the range of the original instrument for simulation purposes, in contrast to methodologies that provide appropriate constraints only for conditional expectations.
我们的目标是开发一个贝塔回归(BR)模型,以描述在自然史和随机临床试验环境中 AD 患者的 11 项阿尔茨海默病(AD)评估量表认知子量表(ADAS-cog)的纵向进展,同时利用个体患者和汇总水平文献数据。来自联合对抗重大疾病数据库(3223 名患者)、阿尔茨海默病神经影像学倡议研究数据库(186 名患者)的患者数据以及来自 73 篇文献参考(代表 17235 名患者)的汇总数据被拟合到 BR 药物-疾病-试验模型中。在模型中估计了当前可用的乙酰胆碱酯酶抑制剂的治疗效果、疾病严重程度的纵向变化、辍学率、安慰剂效应以及影响这些参数的因素。基于预测检查和外部验证,开发了一个使用汇总水平和患者水平数据的 ADAS-cog 的足够的 BR 荟萃分析模型。ADAS-cog 的基线值是根据基线 MMSE 得分估计的。疾病进展取决于时间、ApoE4 状态、年龄和性别。研究辍学是时间、基线年龄和基线 MMSE 的函数。即使包含残差,BR 也将约束模拟限制在 ADAS-cog 的 0-70 范围内。该模型允许同时拟合汇总和患者水平数据,允许整合所有可用信息。BR 模型的另一个优点是,它为模拟目的将值约束在原始仪器的范围内,与仅为条件期望提供适当约束的方法相反。