Laser Zentrum Hannover eV, Hannover, Germany.
Langmuir. 2012 Aug 21;28(33):12060-6. doi: 10.1021/la300308w. Epub 2012 Aug 9.
Nanostructures entail a high potential for improving implant surfaces, for instance, in stent applications. The electrophoretic deposition of laser-generated colloidal nanoparticles is an appropriate tool for creating large-area nanostructures on surfaces. Until now, the bonding and characteristics of the interface between deposited nanoparticles and the substrate surface has not been known. It is investigated using X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy to characterize an electropolished NiTi stent surface coated by laser-generated Au and Ti nanoparticles. The deposition of elemental Au and Ti nanoparticles is observed on the total 3D surface. Ti-coated samples are composed of Ti oxide and Ti carbide because of nanoparticle fabrication and the coating process carried out in 2-propanol. The interface between nanoparticles and the electropolished surface consists of a smooth, monotone elemental depth profile. The interface depth is higher for the Ti nanoparticle coating than for the Au nanoparticle coating. This smooth depth gradient of Ti across the coating-substrate intersection and the thicker interface layer indicate the hard bonding of Ti-based nanoparticles on the surface. Accordingly, electron microscopy reveals nanoparticles adsorbed on the surface without any sorption-blocking intermediate layer. The physicomechanical stability of the bond may benefit from such smooth depth gradients and direct, ligand-free contact. This would potentially increase the coating stability during stent application.
纳米结构在改善植入物表面方面具有很大的潜力,例如在支架应用中。激光产生的胶体纳米粒子的电泳沉积是在表面上制造大面积纳米结构的合适工具。到目前为止,还不知道沉积的纳米粒子与基底表面之间的界面的结合和特性。使用 X 射线光电子能谱、俄歇电子能谱和透射电子显微镜来研究激光产生的 Au 和 Ti 纳米粒子涂覆的电解抛光 NiTi 支架表面的特性。在整个 3D 表面上观察到元素 Au 和 Ti 纳米粒子的沉积。由于纳米粒子制造和在 2-丙醇中进行的涂层过程,Ti 涂层样品由 Ti 氧化物和 Ti 碳化物组成。纳米粒子和电解抛光表面之间的界面由光滑、单调的元素深度分布组成。Ti 纳米粒子涂层的界面深度高于 Au 纳米粒子涂层。Ti 跨越涂层-基底交界面的这种平滑深度梯度和较厚的界面层表明 Ti 基纳米粒子在表面上的硬键合。因此,电子显微镜显示纳米粒子在没有任何吸附阻挡中间层的情况下吸附在表面上。这种键的物理机械稳定性可能受益于这种平滑的深度梯度和直接的、无配体的接触。这可能会增加支架应用过程中涂层的稳定性。