Suppr超能文献

特邀评论:评估腹泻病中并发感染病原体之间的机制相互作用。

Invited commentary: assessing mechanistic interaction between coinfecting pathogens for diarrheal disease.

机构信息

Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

Am J Epidemiol. 2012 Sep 1;176(5):396-9. doi: 10.1093/aje/kws214. Epub 2012 Jul 25.

Abstract

The interaction estimates from Bhavnani et al. (Am J Epidemiol. 2012;176(5):387-395) are used to evaluate evidence for mechanistic interaction between coinfecting pathogens for diarrheal disease. Mechanistic interaction is said to be present if there are individuals for whom the outcome would occur if both of 2 exposures are present but would not occur if 1 or the other of the exposures is absent. In the epidemiologic literature, mechanistic interaction is often conceived of as synergism within Rothman's sufficient-cause framework. Tests for additive interaction are sometimes used to assess such synergism or mechanistic interaction, but testing for positive additive interaction only allows for the conclusion of mechanistic interaction under fairly strong "monotonicity" assumptions. Alternative tests for mechanistic interaction, which do not require monotonicity assumptions, have been developed more recently but require more substantial additive interaction to draw the conclusion of the presence of mechanistic interaction. The additive interaction reported by Bhavnani et al. is of sufficient magnitude to provide strong evidence of mechanistic interaction between rotavirus and Giardia and between rotavirus and Escherichia. coli/Shigellae, even without any assumptions about monotonicity.

摘要

Bhavnani 等人的交互作用估计(Am J Epidemiol. 2012;176(5):387-395)用于评估腹泻病中两种病原体共同感染的机制性相互作用的证据。如果存在这样的个体,即如果两种暴露都存在,则结果会发生,但如果只有一种或另一种暴露不存在,则结果不会发生,则可以说存在机制性相互作用。在流行病学文献中,机制性相互作用通常被认为是 Rothman 的充分原因框架内的协同作用。有时会使用加性交互作用检验来评估这种协同作用或机制性相互作用,但检验阳性加性交互作用仅允许在相当强的“单调性”假设下得出存在机制性相互作用的结论。最近开发了一些不需要单调性假设的替代机制性相互作用检验方法,但需要更强的加性相互作用来得出存在机制性相互作用的结论。Bhavnani 等人报告的加性相互作用的幅度足以提供强有力的证据,表明轮状病毒和贾第鞭毛虫以及轮状病毒和大肠杆菌/志贺氏菌之间存在机制性相互作用,即使没有关于单调性的任何假设。

相似文献

1
Invited commentary: assessing mechanistic interaction between coinfecting pathogens for diarrheal disease.
Am J Epidemiol. 2012 Sep 1;176(5):396-9. doi: 10.1093/aje/kws214. Epub 2012 Jul 25.
3
Bhavnani et Al. respond to "assessing mechanistic interaction".
Am J Epidemiol. 2012 Sep 1;176(5):400-1. doi: 10.1093/aje/kws217. Epub 2012 Jul 25.
5
Potential role of adherence traits of Escherichia coli in persistent diarrhea in an urban Brazilian slum.
Pediatr Infect Dis J. 1991 Oct;10(10):746-51. doi: 10.1097/00006454-199110000-00006.
6
Synergistic rotavirus and Escherichia coli diarrheal infection of mice.
Infect Immun. 1985 Feb;47(2):573-4. doi: 10.1128/iai.47.2.573-574.1985.
8
[Bacterial, rotavirus and mixed etiologies of diarrhea in children].
Rev Ig Bacteriol Virusol Parazitol Epidemiol Pneumoftiziol Bacteriol Virusol Parazitol Epidemiol. 1988 Jul-Sep;33(3):233-8.
9
Etiology of acute gastroenteritis among children less than 5 years of age in Bucaramanga, Colombia: A case-control study.
PLoS Negl Trop Dis. 2020 Jun 30;14(6):e0008375. doi: 10.1371/journal.pntd.0008375. eCollection 2020 Jun.
10
Determinants of symptomatic giardiasis in childhood.
Trop Gastroenterol. 1996 Apr-Jun;17(2):70-6.

引用本文的文献

1
Gender-based violence syndemics in global health: A systematic review.
Soc Sci Med. 2025 Feb;367:117793. doi: 10.1016/j.socscimed.2025.117793. Epub 2025 Jan 30.
2
Considerations when assessing heterogeneity of treatment effect in patient-centered outcomes research.
J Clin Epidemiol. 2018 Aug;100:22-31. doi: 10.1016/j.jclinepi.2018.04.005. Epub 2018 Apr 11.
4
Bhavnani et Al. respond to "assessing mechanistic interaction".
Am J Epidemiol. 2012 Sep 1;176(5):400-1. doi: 10.1093/aje/kws217. Epub 2012 Jul 25.

本文引用的文献

1
Sample Size and Power Calculations for Additive Interactions.
Epidemiol Methods. 2012 Aug 1;1(1):159-188. doi: 10.1515/2161-962X.1010.
3
Sufficient cause interactions for categorical and ordinal exposures with three levels.
Biometrika. 2010 Sep;97(3):647-659. doi: 10.1093/biomet/asq030. Epub 2010 Jun 1.
4
Recommendations for presenting analyses of effect modification and interaction.
Int J Epidemiol. 2012 Apr;41(2):514-20. doi: 10.1093/ije/dyr218. Epub 2012 Jan 9.
5
A weighting approach to causal effects and additive interaction in case-control studies: marginal structural linear odds models.
Am J Epidemiol. 2011 Nov 15;174(10):1197-203. doi: 10.1093/aje/kwr334. Epub 2011 Oct 19.
6
Sensitivity analysis for interactions under unmeasured confounding.
Stat Med. 2012 Sep 28;31(22):2552-64. doi: 10.1002/sim.4354. Epub 2011 Oct 4.
7
A word and that to which it once referred: assessing "biologic" interaction.
Epidemiology. 2011 Jul;22(4):612-3. doi: 10.1097/EDE.0b013e31821db393.
8
Interpretation of subgroup analyses in randomized trials: heterogeneity versus secondary interventions.
Ann Intern Med. 2011 May 17;154(10):680-3. doi: 10.7326/0003-4819-154-10-201105170-00008.
9
Remarks on antagonism.
Am J Epidemiol. 2011 May 15;173(10):1140-7. doi: 10.1093/aje/kwr009. Epub 2011 Apr 13.
10
Biological interaction: time to drop the term?
Epidemiology. 2011 Mar;22(2):148-50. doi: 10.1097/EDE.0b013e3182093298.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验