Suppr超能文献

管理和查询全切片图像。

Managing and Querying Whole Slide Images.

作者信息

Wang Fusheng, Oh Tae W, Vergara-Niedermayr Cristobal, Kurc Tahsin, Saltz Joel

机构信息

Center for Comprehensive Informatics, Emory University, Atlanta, Georgia, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2012 Feb 16;8319. doi: 10.1117/12.912388.

Abstract

High-resolution pathology images provide rich information about the morphological and functional characteristics of biological systems, and are transforming the field of pathology into a new era. To facilitate the use of digital pathology imaging for biomedical research and clinical diagnosis, it is essential to manage and query both whole slide images (WSI) and analytical results generated from images, such as annotations made by humans and computed features and classifications made by computer algorithms. There are unique requirements on modeling, managing and querying whole slide images, including compatibility with standards, scalability, support of image queries at multiple granularities, and support of integrated queries between images and derived results from the images. In this paper, we present our work on developing the Pathology Image Database System (PIDB), which is a standard oriented image database to support retrieval of images, tiles, regions and analytical results, image visualization and experiment management through a unified interface and architecture. The system is deployed for managing and querying whole slide images for In Silico brain tumor studies at Emory University. PIDB is generic and open source, and can be easily used to support other biomedical research projects. It has the potential to be integrated into a Picture Archiving and Communications System (PACS) with powerful query capabilities to support pathology imaging.

摘要

高分辨率病理图像提供了有关生物系统形态和功能特征的丰富信息,正将病理学领域带入一个新时代。为便于将数字病理成像用于生物医学研究和临床诊断,管理和查询全玻片图像(WSI)以及图像生成的分析结果(如人工标注以及计算机算法得出的特征和分类)至关重要。对全玻片图像的建模、管理和查询有独特要求,包括与标准的兼容性、可扩展性、对多种粒度图像查询的支持以及对图像与图像衍生结果之间集成查询的支持。在本文中,我们展示了开发病理图像数据库系统(PIDB)的工作,这是一个面向标准的图像数据库,通过统一的接口和架构支持图像、切片、区域及分析结果的检索、图像可视化和实验管理。该系统已部署用于管理和查询埃默里大学计算机模拟脑肿瘤研究中的全玻片图像。PIDB是通用且开源的,可轻松用于支持其他生物医学研究项目。它有潜力集成到具有强大查询功能的图像存档与通信系统(PACS)中以支持病理成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba9f/3405921/943f6b5948f9/nihms-352762-f0001.jpg

相似文献

1
Managing and Querying Whole Slide Images.管理和查询全切片图像。
Proc SPIE Int Soc Opt Eng. 2012 Feb 16;8319. doi: 10.1117/12.912388.

引用本文的文献

1
Masked pre-training of transformers for histology image analysis.用于组织学图像分析的Transformer掩码预训练
J Pathol Inform. 2024 May 31;15:100386. doi: 10.1016/j.jpi.2024.100386. eCollection 2024 Dec.
2
Computational pathology: A survey review and the way forward.计算病理学:综述与未来发展方向
J Pathol Inform. 2024 Jan 14;15:100357. doi: 10.1016/j.jpi.2023.100357. eCollection 2024 Dec.
6
: A Cloud MapReduce Based High Performance Whole Slide Image Analysis Framework.一种基于云MapReduce的高性能全切片图像分析框架。
Distrib Parallel Databases. 2019 Jun;37(2):251-272. doi: 10.1007/s10619-018-7237-1. Epub 2018 Jul 30.

本文引用的文献

1
Life sciences domain analysis model.生命科学领域分析模型。
J Am Med Inform Assoc. 2012 Nov-Dec;19(6):1095-102. doi: 10.1136/amiajnl-2011-000763. Epub 2012 Jun 28.
6
An integrative approach for in silico glioma research.基于计算的脑胶质瘤研究的综合方法。
IEEE Trans Biomed Eng. 2010 Oct;57(10):2617-21. doi: 10.1109/TBME.2010.2060338. Epub 2010 Jul 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验