Suppr超能文献

基于王-兰德蒙特卡罗的突变运动跟踪方法。

Wang-Landau Monte Carlo-based tracking methods for abrupt motions.

机构信息

Department of Electrical Engineering and Computer Science, Automation and Systems Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2013 Apr;35(4):1011-24. doi: 10.1109/TPAMI.2012.161.

Abstract

We propose a novel tracking algorithm based on the Wang-Landau Monte Carlo (WLMC) sampling method for dealing with abrupt motions efficiently. Abrupt motions cause conventional tracking methods to fail because they violate the motion smoothness constraint. To address this problem, we introduce the Wang-Landau sampling method and integrate it into a Markov Chain Monte Carlo (MCMC)-based tracking framework. By employing the novel density-of-states term estimated by the Wang-Landau sampling method into the acceptance ratio of MCMC, our WLMC-based tracking method alleviates the motion smoothness constraint and robustly tracks the abrupt motions. Meanwhile, the marginal likelihood term of the acceptance ratio preserves the accuracy in tracking smooth motions. The method is then extended to obtain good performance in terms of scalability, even on a high-dimensional state space. Hence, it covers drastic changes in not only position but also scale of a target. To achieve this, we modify our method by combining it with the N-fold way algorithm and present the N-Fold Wang-Landau (NFWL)-based tracking method. The N-fold way algorithm helps estimate the density-of-states with a smaller number of samples. Experimental results demonstrate that our approach efficiently samples the states of the target, even in a whole state space, without loss of time, and tracks the target accurately and robustly when position and scale are changing severely.

摘要

我们提出了一种新的基于 Wang-Landau 蒙特卡罗(WLMC)采样方法的跟踪算法,用于有效地处理突然运动。突然运动导致传统的跟踪方法失败,因为它们违反了运动平滑性约束。为了解决这个问题,我们引入了 Wang-Landau 采样方法,并将其集成到基于马尔可夫链蒙特卡罗(MCMC)的跟踪框架中。通过在 MCMC 的接受率中使用 Wang-Landau 采样方法估计的新状态密度项,我们的基于 WLMC 的跟踪方法减轻了运动平滑性约束,并稳健地跟踪了突然运动。同时,接受率的边缘似然项保持了在跟踪平滑运动中的准确性。然后,该方法被扩展以在可扩展性方面获得良好的性能,即使在高维状态空间中也是如此。因此,它不仅涵盖了目标位置的急剧变化,还涵盖了目标尺度的急剧变化。为此,我们通过将其与 N 重方法相结合来修改我们的方法,并提出了基于 N 重 Wang-Landau(NFWL)的跟踪方法。N 重方法有助于用较少的样本估计状态密度。实验结果表明,我们的方法能够有效地对目标的状态进行采样,即使在整个状态空间中也是如此,而且在位置和尺度发生剧烈变化时,能够准确而稳健地跟踪目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验