Suppr超能文献

胶质瘤相关血管新生的机制。

Mechanisms of glioma-associated neovascularization.

机构信息

Department of Radiation Oncology, New York University School of Medicine, New York, New York 10016, USA.

出版信息

Am J Pathol. 2012 Oct;181(4):1126-41. doi: 10.1016/j.ajpath.2012.06.030. Epub 2012 Aug 2.

Abstract

Glioblastomas (GBMs), the most common primary brain tumor in adults, are characterized by resistance to chemotherapy and radiotherapy. One of the defining characteristics of GBM is an abundant and aberrant vasculature. The processes of vascular co-option, angiogenesis, and vasculogenesis in gliomas have been extensively described. Recently, however, it has become clear that these three processes are not the only mechanisms by which neovascularization occurs in gliomas. Furthermore, it seems that these processes interact extensively, with potential overlap among them. At least five mechanisms by which gliomas achieve neovascularization have been described: vascular co-option, angiogenesis, vasculogenesis, vascular mimicry, and (the most recently described) glioblastoma-endothelial cell transdifferentiation. We review these mechanisms in glioma neovascularization, with a particular emphasis on the roles of hypoxia and glioma stem cells in each process. Although some of these processes are well established, others have been identified only recently and will need to be further investigated for complete validation. We also review strategies to target glioma neovascularization and the development of resistance to these therapeutic strategies. Finally, we describe how these complex processes interlink and overlap. A thorough understanding of the contributing molecular processes that control the five modalities reviewed here should help resolve the treatment resistance that characterizes GBMs.

摘要

胶质母细胞瘤(GBM)是成人中最常见的原发性脑肿瘤,其特征是对化疗和放疗的耐药性。GBM 的一个定义特征是丰富的异常血管生成。胶质瘤中的血管选择、血管生成和血管发生过程已经被广泛描述。然而,最近已经清楚的是,这三个过程并不是胶质瘤中血管新生发生的唯一机制。此外,这些过程似乎广泛地相互作用,它们之间可能存在重叠。至少有五种机制可使胶质瘤实现血管新生:血管选择、血管生成、血管发生、血管模拟和(最近描述的)胶质母细胞瘤内皮细胞转分化。我们综述了胶质瘤血管新生中的这些机制,特别强调了缺氧和胶质瘤干细胞在每个过程中的作用。尽管其中一些过程已经得到很好的确立,但其他过程只是最近才被发现,需要进一步研究以完全验证。我们还综述了靶向胶质瘤血管新生的策略以及对这些治疗策略的耐药性的发展。最后,我们描述了这些复杂过程是如何相互关联和重叠的。对控制本文综述的五种模式的相关分子过程的深入了解,应该有助于解决胶质母细胞瘤的治疗耐药性问题。

相似文献

1
Mechanisms of glioma-associated neovascularization.
Am J Pathol. 2012 Oct;181(4):1126-41. doi: 10.1016/j.ajpath.2012.06.030. Epub 2012 Aug 2.
2
Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited.
Acta Neuropathol. 2012 Dec;124(6):763-75. doi: 10.1007/s00401-012-1066-5. Epub 2012 Nov 11.
3
Pro- and Antiangiogenic Factors in Gliomas: Implications for Novel Therapeutic Possibilities.
Int J Mol Sci. 2021 Jun 7;22(11):6126. doi: 10.3390/ijms22116126.
5
Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas.
J Clin Neurosci. 2009 Sep;16(9):1119-30. doi: 10.1016/j.jocn.2009.02.009. Epub 2009 Jun 24.
6
Hypoxia-Mediated Mechanisms Associated with Antiangiogenic Treatment Resistance in Glioblastomas.
Am J Pathol. 2017 May;187(5):940-953. doi: 10.1016/j.ajpath.2017.01.010. Epub 2017 Mar 9.
7
Angiogenesis in gliomas: biology and molecular pathophysiology.
Brain Pathol. 2005 Oct;15(4):297-310. doi: 10.1111/j.1750-3639.2005.tb00115.x.
8
Re: angiogenesis and antiangiogenic therapy for malignant gliomas.
Brain Tumor Pathol. 2005;22(1):51. doi: 10.1007/s10014-004-0172-z.
9
Tumor vasculature and glioma stem cells: Contributions to glioma progression.
Cancer Lett. 2016 Oct 1;380(2):545-551. doi: 10.1016/j.canlet.2014.12.028. Epub 2014 Dec 16.
10
Glioma stem/progenitor cells contribute to neovascularization via transdifferentiation.
Stem Cell Rev Rep. 2011 Mar;7(1):141-52. doi: 10.1007/s12015-010-9169-7.

引用本文的文献

1
Glioblastoma: From Pathophysiology to Novel Therapeutic Approaches.
Biomedicines. 2025 Aug 12;13(8):1963. doi: 10.3390/biomedicines13081963.
2
Endothelial transdifferentiation of glioma stem cells: a literature review.
Acta Neuropathol Commun. 2025 Aug 21;13(1):181. doi: 10.1186/s40478-025-02031-x.
3
Pericytes change function depending on glioblastoma vicinity: emphasis on immune regulation.
Mol Oncol. 2025 Sep;19(9):2491-2514. doi: 10.1002/1878-0261.70095. Epub 2025 Jul 17.
6
Visualizing the endothelial glycocalyx in human glioma vasculature.
Brain Tumor Pathol. 2025 Apr;42(2):33-42. doi: 10.1007/s10014-025-00498-z. Epub 2025 Mar 4.
10
The role of NLRP3 and NLRP12 inflammasomes in glioblastoma.
Genes Immun. 2024 Dec;25(6):541-551. doi: 10.1038/s41435-024-00309-z. Epub 2024 Nov 27.

本文引用的文献

1
Clinical significance of vasculogenic mimicry in human gliomas.
J Neurooncol. 2011 Nov;105(2):173-9. doi: 10.1007/s11060-011-0578-5. Epub 2011 Apr 30.
2
Bradykinin promotes the chemotactic invasion of primary brain tumors.
J Neurosci. 2011 Mar 30;31(13):4858-67. doi: 10.1523/JNEUROSCI.3825-10.2011.
3
Antiangiogenic therapy: impact on invasion, disease progression, and metastasis.
Nat Rev Clin Oncol. 2011 Mar 1;8(4):210-21. doi: 10.1038/nrclinonc.2011.21.
4
Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma.
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3749-54. doi: 10.1073/pnas.1014480108. Epub 2011 Feb 14.
5
Transdifferentiation of glioblastoma cells into vascular endothelial cells.
Proc Natl Acad Sci U S A. 2011 Mar 15;108(11):4274-80. doi: 10.1073/pnas.1016030108. Epub 2011 Jan 24.
8
R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1α upregulation in adult glioma.
Acta Neuropathol. 2011 Feb;121(2):279-81. doi: 10.1007/s00401-010-0790-y. Epub 2010 Dec 24.
9
Vasculogenic mimicry-potential target for glioblastoma therapy: an in vitro and in vivo study.
Med Oncol. 2012 Mar;29(1):324-31. doi: 10.1007/s12032-010-9765-z. Epub 2010 Dec 14.
10
Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells.
Nature. 2010 Dec 9;468(7325):824-8. doi: 10.1038/nature09557. Epub 2010 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验