Department of Applied Physics, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
Sci Total Environ. 2012 Oct 1;435-436:270-9. doi: 10.1016/j.scitotenv.2012.07.014. Epub 2012 Aug 2.
Road traffic has a heavy impact on the urban sound environment, constituting the main source of noise and widely dominating its spectral composition. In this context, our research investigates the use of recorded sound spectra as input data for the development of real-time short-term road traffic flow estimation models. For this, a series of models based on the use of Multilayer Perceptron Neural Networks, multiple linear regression, and the Fisher linear discriminant were implemented to estimate road traffic flow as well as to classify it according to the composition of heavy vehicles and motorcycles/mopeds. In view of the results, the use of the 50-400 Hz and 1-2.5 kHz frequency ranges as input variables in multilayer perceptron-based models successfully estimated urban road traffic flow with an average percentage of explained variance equal to 86%, while the classification of the urban road traffic flow gave an average success rate of 96.1%.
道路交通对城市声环境有很大的影响,构成了噪声的主要来源,并广泛主导其频谱组成。在这种情况下,我们的研究调查了使用记录的声音频谱作为输入数据来开发实时短期道路交通流量估计模型的方法。为此,我们实现了一系列基于使用多层感知机神经网络、多元线性回归和 Fisher 线性判别分析的模型,以估计道路交通流量,并根据重型车辆和摩托车/轻便摩托车的组成对其进行分类。根据结果,在基于多层感知机的模型中使用 50-400 Hz 和 1-2.5 kHz 频率范围作为输入变量,可以成功地以平均解释方差等于 86%的比例估计城市道路交通流量,而城市道路交通流量的分类则给出了平均成功率为 96.1%。