Suppr超能文献

tDNA绝缘子与TFIIIC在基因组组织中的新作用。

tDNA insulators and the emerging role of TFIIIC in genome organization.

作者信息

Van Bortle Kevin, Corces Victor G

机构信息

Department of Biology, Emory University, Atlanta, GA, USA.

出版信息

Transcription. 2012 Nov-Dec;3(6):277-84. doi: 10.4161/trns.21579. Epub 2012 Aug 14.

Abstract

Recent findings provide evidence that tDNAs function as chromatin insulators from yeast to humans. TFIIIC, a transcription factor that interacts with the B-box in tDNAs as well as thousands of ETC sites in the genome, is responsible for insulator function. Though tDNAs are capable of enhancer-blocking and barrier activities for which insulators are defined, new insights into the relationship between insulators and chromatin structure suggest that TFIIIC serves a complex role in genome organization. We review the role of tRNA genes and TFIIIC as chromatin insulators, and highlight recent findings that have broadened our understanding of insulators in genome biology.

摘要

最近的研究结果表明,从酵母到人类,tDNA发挥着染色质绝缘子的功能。TFIIIC是一种转录因子,它与tDNA中的B-box以及基因组中数千个ETC位点相互作用,负责绝缘子功能。尽管tDNA具有增强子阻断和屏障活性(这是绝缘子的定义特征),但对绝缘子与染色质结构之间关系的新见解表明,TFIIIC在基因组组织中发挥着复杂的作用。我们综述了tRNA基因和TFIIIC作为染色质绝缘子的作用,并强调了最近的研究结果,这些结果拓宽了我们对基因组生物学中绝缘子的理解。

相似文献

1
tDNA insulators and the emerging role of TFIIIC in genome organization.
Transcription. 2012 Nov-Dec;3(6):277-84. doi: 10.4161/trns.21579. Epub 2012 Aug 14.
2
TFIIIC-based chromatin insulators through eukaryotic evolution.
Gene. 2022 Aug 15;835:146533. doi: 10.1016/j.gene.2022.146533. Epub 2022 May 24.
3
TFIIIC bound DNA elements in nuclear organization and insulation.
Biochim Biophys Acta. 2013 Mar-Apr;1829(3-4):418-24. doi: 10.1016/j.bbagrm.2012.09.006. Epub 2012 Sep 21.
4
Human tRNA genes function as chromatin insulators.
EMBO J. 2012 Jan 18;31(2):330-50. doi: 10.1038/emboj.2011.406. Epub 2011 Nov 15.
5
TFIIIC binding sites function as both heterochromatin barriers and chromatin insulators in Saccharomyces cerevisiae.
Eukaryot Cell. 2008 Dec;7(12):2078-86. doi: 10.1128/EC.00128-08. Epub 2008 Oct 10.
6
Transcription independent insulation at TFIIIC-dependent insulators.
Genetics. 2009 Sep;183(1):131-48. doi: 10.1534/genetics.109.106203. Epub 2009 Jul 13.
7
Extra-transcriptional functions of RNA Polymerase III complexes: TFIIIC as a potential global chromatin bookmark.
Gene. 2012 Feb 10;493(2):169-75. doi: 10.1016/j.gene.2011.09.018. Epub 2011 Oct 1.
8
Gene insulation. Part II: natural strategies in vertebrates.
Biochem Cell Biol. 2010 Dec;88(6):885-98. doi: 10.1139/O10-111.
9
A role for TFIIIC transcription factor complex in genome organization.
Cell. 2006 Jun 2;125(5):859-72. doi: 10.1016/j.cell.2006.04.028.
10
Gene insulation. Part I: natural strategies in yeast and Drosophila.
Biochem Cell Biol. 2010 Dec;88(6):875-84. doi: 10.1139/O10-110.

引用本文的文献

1
The choreography of chromatin in RNA polymerase III regulation.
Biochem Soc Trans. 2024 Jun 26;52(3):1173-1189. doi: 10.1042/BST20230770.
2
Hold out the genome: a roadmap to solving the cis-regulatory code.
Nature. 2024 Jan;625(7993):41-50. doi: 10.1038/s41586-023-06661-w. Epub 2023 Dec 13.
4
Structural insights into human TFIIIC promoter recognition.
Sci Adv. 2023 Jul 7;9(27):eadh2019. doi: 10.1126/sciadv.adh2019.
5
Loops and the activity of loop extrusion factors constrain chromatin dynamics.
Mol Biol Cell. 2023 Jul 1;34(8):ar78. doi: 10.1091/mbc.E23-04-0119. Epub 2023 Apr 26.
6
You shall not pass! A Chromatin barrier story in plants.
Front Plant Sci. 2022 Sep 20;13:888102. doi: 10.3389/fpls.2022.888102. eCollection 2022.
8
Context-aware synthetic biology by controller design: Engineering the mammalian cell.
Cell Syst. 2021 Jun 16;12(6):561-592. doi: 10.1016/j.cels.2021.05.011.
9
Implication of a new function of human tDNAs in chromatin organization.
Sci Rep. 2020 Oct 15;10(1):17440. doi: 10.1038/s41598-020-74499-7.

本文引用的文献

1
Nature and function of insulator protein binding sites in the Drosophila genome.
Genome Res. 2012 Nov;22(11):2188-98. doi: 10.1101/gr.138156.112. Epub 2012 Jul 5.
2
Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains.
Genome Res. 2012 Nov;22(11):2176-87. doi: 10.1101/gr.136788.111. Epub 2012 Jun 21.
3
TFIIIC localizes budding yeast ETC sites to the nuclear periphery.
Mol Biol Cell. 2012 Jul;23(14):2741-54. doi: 10.1091/mbc.E11-04-0365. Epub 2012 Apr 11.
4
Spatial partitioning of the regulatory landscape of the X-inactivation centre.
Nature. 2012 Apr 11;485(7398):381-5. doi: 10.1038/nature11049.
5
Topological domains in mammalian genomes identified by analysis of chromatin interactions.
Nature. 2012 Apr 11;485(7398):376-80. doi: 10.1038/nature11082.
6
Genome-wide studies of the multi-zinc finger Drosophila Suppressor of Hairy-wing protein in the ovary.
Nucleic Acids Res. 2012 Jul;40(12):5415-31. doi: 10.1093/nar/gks225. Epub 2012 Mar 9.
7
Chromatin insulator elements: establishing barriers to set heterochromatin boundaries.
Epigenomics. 2012 Feb;4(1):67-80. doi: 10.2217/epi.11.112.
8
Three-dimensional folding and functional organization principles of the Drosophila genome.
Cell. 2012 Feb 3;148(3):458-72. doi: 10.1016/j.cell.2012.01.010. Epub 2012 Jan 19.
9
A decade of 3C technologies: insights into nuclear organization.
Genes Dev. 2012 Jan 1;26(1):11-24. doi: 10.1101/gad.179804.111.
10
Human tRNA genes function as chromatin insulators.
EMBO J. 2012 Jan 18;31(2):330-50. doi: 10.1038/emboj.2011.406. Epub 2011 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验