Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):708-19. doi: 10.1109/TNSRE.2012.2210246. Epub 2012 Aug 8.
Accurately detecting hidden clinical or behavioral states from sequential measurements is an emerging topic in neuroscience and medicine, which may dramatically impact neural prosthetics, brain-computer interface and drug delivery. For example, early detection of an epileptic seizure from sequential electroencephalographic (EEG) measurements would allow timely administration of anticonvulsant drugs or neurostimulation, thus reducing physical impairment and risks of overtreatment. We develop a Bayesian paradigm for state transition detection that combines optimal control and Markov processes. We define a hidden Markov model of the state evolution and develop a detection policy that minimizes a loss function of both probability of false positives and accuracy (i.e., lag between estimated and actual transition time). Our strategy automatically adapts to each newly acquired measurement based on the state evolution model and the relative loss for false positives and accuracy, thus resulting in a time varying threshold policy. The paradigm was used in two applications: 1) detection of movement onset (behavioral state) from subthalamic single unit recordings in Parkinson's disease patients performing a motor task; 2) early detection of an approaching seizure (clinical state) from multichannel intracranial EEG recordings in rodents treated with pentylenetetrazol chemoconvulsant. Our paradigm performs significantly better than chance and improves over widely used detection algorithms.
从连续测量中准确检测隐藏的临床或行为状态是神经科学和医学中的一个新兴主题,这可能会对神经假肢、脑机接口和药物输送产生重大影响。例如,从连续脑电图 (EEG) 测量中早期检测癫痫发作,可以及时给予抗惊厥药物或神经刺激,从而减少身体损伤和过度治疗的风险。我们开发了一种用于状态转换检测的贝叶斯范式,它结合了最优控制和马尔可夫过程。我们定义了状态演化的隐马尔可夫模型,并开发了一种检测策略,该策略最小化假阳性概率和准确性的损失函数(即估计和实际转换时间之间的滞后)。我们的策略根据状态演化模型和假阳性与准确性的相对损失,自动适应每个新获取的测量值,从而导致时变阈值策略。该范例用于两个应用:1)在帕金森病患者进行运动任务时从丘脑下单个单元记录中检测运动起始(行为状态);2)在戊四氮化学惊厥剂治疗的啮齿动物中,从多通道颅内 EEG 记录中早期检测即将发生的癫痫发作(临床状态)。我们的范例表现明显优于随机水平,并优于广泛使用的检测算法。