Paul-Drude-Institut für Festkörperelektronik, Berlin, Germany.
J Phys Condens Matter. 2012 Sep 5;24(35):354008. doi: 10.1088/0953-8984/24/35/354008. Epub 2012 Aug 16.
We achieved the repositioning of native In adatoms on the polar III-V semiconductor surface InAs(111)A-(2 × 2) with atomic precision in a scanning tunnelling microscope (STM) operated at 5 K. The repositioning is performed by vertical manipulation, i.e., a reversible transfer of an individual adatom between the surface and the STM tip. Surface-to-tip transfer is achieved by a stepwise vibrational excitation of the adsorbate-surface bond via inelastic electron tunnelling assisted by the tip-induced electric field. In contrast, tip-to-surface back-transfer occurs upon tip-surface point contact formation governed by short-range adhesive forces between the surface and the In atom located at the tip apex. In addition, we found that carrier transport through the point contact is not of ballistic nature but is due to electron tunnelling. The vertical manipulation scheme used here enables us to assemble nanostructures of diverse sizes and shapes with the In adatoms residing on vacancy sites of the (2 × 2)-reconstructed surface (nearest-neighbour vacancy spacing: 8.57 Å).
我们在 5 K 下的扫描隧道显微镜(STM)中以原子精度实现了本征 In 原子在极性 III-V 半导体表面 InAs(111)A-(2 × 2)上的重新定位。这种重新定位是通过垂直操作来实现的,即通过弹性电子隧穿辅助下的吸附物-表面键的逐步振动激发,将单个 adatoms 在表面和 STM 针尖之间进行可逆转移。相比之下,针尖到表面的反向转移是由于针尖诱导的电场作用下,表面和位于针尖尖端的 In 原子之间的短程粘附力导致的点接触形成。此外,我们发现通过点接触的载流子传输不是弹道性质的,而是由于电子隧穿。这里使用的垂直操作方案使我们能够组装具有不同尺寸和形状的纳米结构,其中 In adatoms 位于(2×2)重构表面的空位位置(最近邻空位间距:8.57 Å)。