Suppr超能文献

动态时间规整和机器学习在脉动信号质量评估中的应用。

Dynamic time warping and machine learning for signal quality assessment of pulsatile signals.

机构信息

Institute of Biomedical Engineering, School of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China.

出版信息

Physiol Meas. 2012 Sep;33(9):1491-501. doi: 10.1088/0967-3334/33/9/1491. Epub 2012 Aug 17.

Abstract

In this work, we describe a beat-by-beat method for assessing the clinical utility of pulsatile waveforms, primarily recorded from cardiovascular blood volume or pressure changes, concentrating on the photoplethysmogram (PPG). Physiological blood flow is nonstationary, with pulses changing in height, width and morphology due to changes in heart rate, cardiac output, sensor type and hardware or software pre-processing requirements. Moreover, considerable inter-individual and sensor-location variability exists. Simple template matching methods are therefore inappropriate, and a patient-specific adaptive initialization is therefore required. We introduce dynamic time warping to stretch each beat to match a running template and combine it with several other features related to signal quality, including correlation and the percentage of the beat that appeared to be clipped. The features were then presented to a multi-layer perceptron neural network to learn the relationships between the parameters in the presence of good- and bad-quality pulses. An expert-labeled database of 1055 segments of PPG, each 6 s long, recorded from 104 separate critical care admissions during both normal and verified arrhythmic events, was used to train and test our algorithms. An accuracy of 97.5% on the training set and 95.2% on test set was found. The algorithm could be deployed as a stand-alone signal quality assessment algorithm for vetting the clinical utility of PPG traces or any similar quasi-periodic signal.

摘要

在这项工作中,我们描述了一种逐拍评估脉动波形临床实用性的方法,主要记录自心血管血容量或压力变化,重点是光体积描记图(PPG)。生理血流是不稳定的,由于心率、心输出量、传感器类型以及硬件或软件预处理要求的变化,脉冲的高度、宽度和形态都在发生变化。此外,个体间和传感器位置间存在相当大的变异性。因此,简单的模板匹配方法是不适用的,需要进行患者特定的自适应初始化。我们引入动态时间规整来拉伸每个节拍,使其与运行模板匹配,并结合其他几个与信号质量相关的特征,包括相关性和被裁剪的节拍百分比。然后,这些特征被呈现给多层感知机神经网络,以学习在存在良好和不良脉冲的情况下参数之间的关系。我们使用一个专家标记的 1055 个 PPG 片段数据库,每个片段长 6 秒,来自 104 个单独的重症监护入院期间的正常和已验证的心律失常事件,来训练和测试我们的算法。在训练集上的准确率为 97.5%,在测试集上的准确率为 95.2%。该算法可以作为一种独立的信号质量评估算法,用于审查 PPG 迹线或任何类似的准周期性信号的临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验