Suppr超能文献

心电图信号质量在非监督远程医疗环境中的衡量标准。

Electrocardiogram signal quality measures for unsupervised telehealth environments.

机构信息

Graduate School of Biomedical Engineering, University of New South Wales, Sydney NSW 2052, Australia.

出版信息

Physiol Meas. 2012 Sep;33(9):1517-33. doi: 10.1088/0967-3334/33/9/1517. Epub 2012 Aug 17.

Abstract

The use of telehealth paradigms for the remote management of patients suffering from chronic conditions has become more commonplace with the advancement of Internet connectivity and enterprise software systems. To facilitate clinicians in managing large numbers of telehealth patients, and in digesting the vast array of data returned from the remote monitoring environment, decision support systems in various guises are often utilized. The success of decision support systems in interpreting patient conditions from physiological data is dependent largely on the quality of these recorded data. This paper outlines an algorithm to determine the quality of single-lead electrocardiogram (ECG) recordings obtained from telehealth patients. Three hundred short ECG recordings were manually annotated to identify movement artifact, QRS locations and signal quality (discrete quality levels) by a panel of three experts, who then reconciled the annotation as a group to resolve any discrepancies. After applying a published algorithm to remove gross movement artifact, the proposed method was then applied to estimate the remaining ECG signal quality, using a Parzen window supervised statistical classifier model. The three-class classifier model, using a number of time-domain features and evaluated using cross validation, gave an accuracy in classifying signal quality of 78.7% (κ = 0.67) when using fully automated preprocessing algorithms to remove gross motion artifact and detect QRS locations. This is a similar level of accuracy to the reported human inter-scorer agreement when generating the gold standard annotation (accuracy = 70-89.3%, κ = 0.54-0.84). These results indicate that the assessment of the quality of single-lead ECG recordings, acquired in unsupervised telehealth environments, is entirely feasible and may help to promote the acceptance and utility of future decision support systems for remotely managing chronic disease conditions.

摘要

随着互联网连接和企业软件系统的进步,使用远程医疗模式来管理患有慢性病的患者已变得越来越普遍。为了帮助临床医生管理大量远程医疗患者,并消化从远程监测环境返回的大量数据,通常会使用各种形式的决策支持系统。决策支持系统从生理数据解释患者病情的成功在很大程度上取决于这些记录数据的质量。本文概述了一种用于确定从远程医疗患者获得的单导联心电图(ECG)记录质量的算法。通过由三名专家组成的小组手动注释了 300 个短 ECG 记录,以识别运动伪影,QRS 位置和信号质量(离散质量级别),然后由小组协调注释以解决任何差异。在应用发布的算法去除严重运动伪影后,然后应用提出的方法使用 Parzen 窗口监督统计分类器模型来估计剩余的 ECG 信号质量。该三分类器模型使用许多时域特征,并通过交叉验证进行评估,当使用全自动预处理算法去除严重运动伪影并检测 QRS 位置时,对信号质量的分类准确性达到 78.7%(κ=0.67)。这与生成黄金标准注释时报告的人类评分者间一致性(准确性=70-89.3%,κ=0.54-0.84)具有相似的准确性。这些结果表明,对在非监督远程医疗环境中获得的单导联 ECG 记录的质量评估是完全可行的,并且可能有助于促进未来用于远程管理慢性病的决策支持系统的接受和使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验